An extensive comparison of species-abundance distribution models

被引:56
|
作者
Baldridge, Elita [1 ,2 ]
Harris, David J. [3 ]
Xiao, Xiao [1 ,2 ,4 ,5 ]
White, Ethan P. [1 ,2 ,3 ,6 ]
机构
[1] Utah State Univ, Dept Biol, Logan, UT 84322 USA
[2] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA
[3] Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL 32611 USA
[4] Univ Maine, Sch Biol & Ecol, Orono, ME USA
[5] Univ Maine, Senator George J Mitchell Ctr Sustainabil Solut, Orono, ME USA
[6] Univ Florida, Inst Informat, Gainesville, FL 32611 USA
来源
PEERJ | 2016年 / 4卷
基金
美国国家科学基金会;
关键词
Species-abundance distribution; Informatics; Commonness; Rarity; Citizen science; Animals; Plants; Community structure; MAXIMUM-ENTROPY; NEUTRAL THEORY; PATTERNS;
D O I
10.7717/peerj.2823
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A number of different models have been proposed as descriptions of the species abundance distribution (SAD). Most evaluations of these models use only one or two models, focus on only a single ecosystem or taxonomic group, or fail to use appropriate statistical methods. We use likelihood and AIC to compare the fit of four of the most widely used models to data on over 16,000 communities from a diverse array of taxonomic groups and ecosystems. Across all datasets combined the log series, Poisson lognormal, and negative binomial all yield similar overall fits to the data. Therefore, when correcting for differences in the number of parameters the log series generally provides the best fit to data. Within individual datasets some other distributions performed nearly as well as the log-series even after correcting for the number of parameters. The Zipf distribution is generally a poor characterization of the SAD.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] The biogeographical distribution of tree species-abundance and its relation to climatic factors in mass islands
    Xiaoming Li
    Chengzhen Wu
    Wu Gu
    Ran Ye
    Haibo Zhang
    Ping Qi
    Shengqiang Wang
    Siying Zhou
    Yongjie Wei
    Yanhong Cai
    Acta Oceanologica Sinica, 2017, 36 : 87 - 90
  • [22] CORRECTION TO 1 OF MACARTHURS SPECIES-ABUNDANCE FORMULAS
    PIELOU, EC
    ARNASON, AN
    SCIENCE, 1966, 151 (3710) : 592 - &
  • [23] A meta-analysis of species-abundance distributions
    Ulrich, Werner
    Ollik, Marcin
    Ugland, Karl Inne
    OIKOS, 2010, 119 (07) : 1149 - 1155
  • [24] Species-abundance models for brachiopods across the Ordovician-Silurian boundary of South China
    Huang, Bing
    Zhan, Renbin
    ESTONIAN JOURNAL OF EARTH SCIENCES, 2014, 63 (04) : 240 - 243
  • [25] SPECIES-ABUNDANCE, BIOMASS, AND RESOURCE-USE DISTRIBUTIONS
    PAGEL, MD
    HARVEY, PH
    GODFRAY, HCJ
    AMERICAN NATURALIST, 1991, 138 (04): : 836 - 850
  • [26] FITTING TRUNCATED LOGNORMAL DISTRIBUTION TO SPECIES-ABUNDANCE DATA USING MAXIMUM LIKELIHOOD ESTIMATION
    SLOCOMB, J
    STAUFFER, B
    DICKSON, KL
    ECOLOGY, 1977, 58 (03) : 693 - 696
  • [27] The number of species occurring in a sample of a biotic community and its connections with species-abundance relationship and spatial distribution
    Kobayashi, S
    Kimura, K
    ECOLOGICAL RESEARCH, 1994, 9 (03) : 281 - 294
  • [28] Species-abundance distributions under colored environmental noise
    Fung, Tak
    O'Dwyer, James P.
    Chisholm, Ryan A.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2017, 74 (1-2) : 289 - 311
  • [29] Species-abundance distributions under colored environmental noise
    Tak Fung
    James P. O’Dwyer
    Ryan A. Chisholm
    Journal of Mathematical Biology, 2017, 74 : 289 - 311
  • [30] How differences in plant abundance measures produce different species-abundance distributions
    Anderson, Barbara J.
    Chiarucci, Alessandro
    Williamson, Mark
    METHODS IN ECOLOGY AND EVOLUTION, 2012, 3 (05): : 783 - 786