A Unified View of Nonparametric Trend-Cycle Predictors Via Reproducing Kernel Hilbert Spaces

被引:2
|
作者
Dagum, Estela Bee [1 ]
Bianconcini, Silvia [1 ]
机构
[1] Univ Bologna, Dept Stat, I-40126 Bologna, Italy
关键词
Polynomial kernel regression; Real time analysis; Smoothing cubic splines; Spectral properties; Revisions; C01; C02; C14; SPLINE FUNCTIONS; REGRESSION;
D O I
10.1080/07474938.2012.690674
中图分类号
F [经济];
学科分类号
02 ;
摘要
We provide a common approach for studying several nonparametric estimators used for smoothing functional time series data. Linear filters based on different building assumptions are transformed into kernel functions via reproducing kernel Hilbert spaces. For each estimator, we identify a density function or second order kernel, from which a hierarchy of higher order estimators is derived. These are shown to give excellent representations for the currently applied symmetric filters. In particular, we derive equivalent kernels of smoothing splines in Sobolev and polynomial spaces. The asymmetric weights are obtained by adapting the kernel functions to the length of the various filters, and a theoretical and empirical comparison is made with the classical estimators used in real time analysis. The former are shown to be superior in terms of signal passing, noise suppression and speed of convergence to the symmetric filter.
引用
收藏
页码:848 / 867
页数:20
相关论文
共 50 条
  • [1] Approximate nonparametric quantile regression in reproducing kernel Hilbert spaces via random projection
    Zhang, Fode
    Li, Rui
    Lian, Heng
    INFORMATION SCIENCES, 2021, 547 (547) : 244 - 254
  • [2] Reproducing kernel Hilbert spaces via sampling in discrete spaces
    Foroutan, Mohammadreza
    Asadi, Raheleh
    JOURNAL OF ANALYSIS, 2023, 31 (03): : 1805 - 1818
  • [3] Reproducing kernel Hilbert spaces via sampling in discrete spaces
    Mohammadreza Foroutan
    Raheleh Asadi
    The Journal of Analysis, 2023, 31 : 1805 - 1818
  • [4] AN ONLINE PROJECTION ESTIMATOR FOR NONPARAMETRIC REGRESSION IN REPRODUCING KERNEL HILBERT SPACES
    Zhang, Tianyu
    Simon, Noah
    STATISTICA SINICA, 2023, 33 (01) : 127 - 148
  • [5] Reproducing kernel hilbert spaces
    Seddighi, K.
    Iranian Journal of Science & Technology, 1993, 17 (03):
  • [6] Adaptive Control via Embedding in Reproducing Kernel Hilbert Spaces
    Kurdila, Andrew
    Lei, Yu
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 3384 - 3389
  • [7] Pasting Reproducing Kernel Hilbert Spaces
    Sawano, Yoshihiro
    NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 401 - 407
  • [8] Noncommutative reproducing kernel Hilbert spaces
    Ball, Joseph A.
    Marx, Gregory
    Vinnikov, Victor
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (07) : 1844 - 1920
  • [9] On isomorphism of reproducing kernel Hilbert spaces
    V. V. Napalkov
    V. V. Napalkov
    Doklady Mathematics, 2017, 95 : 270 - 272
  • [10] A Primer on Reproducing Kernel Hilbert Spaces
    Manton, Jonathan H.
    Amblard, Pierre-Olivier
    FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2014, 8 (1-2): : 1 - 126