Nitrogen-Doped Graphene Oxide Electrocatalysts for the Oxygen Reduction Reaction

被引:67
|
作者
Dumont, Joseph H. [1 ,2 ]
Martinez, Ulises [1 ]
Artyushkova, Kateryna [2 ]
Purdy, Geraldine M. [1 ]
Dattelbaum, Andrew M. [1 ]
Zelenay, Piotr [1 ]
Mohite, Aditya [1 ]
Atanassov, Plamen [2 ]
Gupta, Gautam [1 ,3 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Univ New Mexico, Albuquerque, NM 87131 USA
[3] Univ Louisville, Chem Engn, Louisville, KY 40292 USA
来源
ACS APPLIED NANO MATERIALS | 2019年 / 2卷 / 03期
基金
美国国家科学基金会;
关键词
oxygen reduction reaction; active sites; graphene; graphene oxide; alkaline; ANION-EXCHANGE MEMBRANES; CATHODE CATALYSTS; TRANSITION-METAL; ACTIVE-SITES; FUEL-CELLS; IRON; PERFORMANCE; POLYANILINE; DURABILITY; CHEMISTRY;
D O I
10.1021/acsanm.8b02235
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Platinum group metal-free (PGM-free) electrocatalysts for the oxygen reduction reaction (ORR) often exhibit a complex functionalized graphitic structure. Because of this complex structure, limited understanding exists about the design factors for the synthesis of high-performing materials. Graphene, a two-dimensional hexagonal structure of carbon, is amenable to structural and functional group modifications, making it an ideal analogue to study crucial properties of more complex graphitic materials utilized as electrocatalysts. In this paper, we report the synthesis of active nitrogen-doped graphene oxide catalysts for the ORR in which their activity and four-electron selectivity are enhanced using simple solvent and electrochemical treatments. The solvents, chosen based on Hansen's solubility parameters, drive a substantial change in the morphology of the functionalized graphene materials by (i) forming microporous holes in the graphitic sheets that lead to edge defects and (ii) inducing 3D structure in the graphitic sheets that promotes ORR Additionally, the cycling of these catalysts has highlighted the multiplicity of the active sites, with different durability, leading to a highly selective catalyst over time, with a minimal loss in performance. High ORR activity was demonstrated in an alkaline electrolyte with an onset potential of similar to 1.1 V and half-wave potential of 0.84 V vs RHE. Furthermore, long-term stability potential cycling showed minimal loss in half-wave potential (<3%) in both N-2-and O-2-saturated solutions with improved selectivity toward the four-electron reduction after 10000 cycles. The results described in this work provide additional understanding about graphitic electrocatalysts in alkaline media that may be utilized to further enhance the performance of PGM-free ORR electrocatalysts.
引用
收藏
页码:1675 / 1682
页数:15
相关论文
共 50 条
  • [21] Nitrogen-Doped Carbon Electrocatalysts Decorated with Transition Metals for the Oxygen Reduction Reaction
    Zhou, Ruifeng
    Jaroniec, Mietek
    Qiao, Shi-Zhang
    CHEMCATCHEM, 2015, 7 (23) : 3808 - 3817
  • [22] Nitrogen-doped Bimetallic Carbon Nanosheets as Efficient Electrocatalysts for Oxygen Reduction Reaction
    Zhao, Quiping
    Hu, Guanqun
    Zhao, Shengbin
    Meng, Xiangzhi
    Meng, Fanchao
    Li, Chunlei
    Cong, Yuanyuan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (07): : 1 - 16
  • [23] Tunable nitrogen-doped carbon aerogels as sustainable electrocatalysts in the oxygen reduction reaction
    Wohlgemuth, Stephanie-Angelika
    Fellinger, Tim-Patrick
    Jaeker, Philipp
    Antonietti, Markus
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (12) : 4002 - 4009
  • [24] Ternary PdNi-based nanocrystals supported on nitrogen-doped reduced graphene oxide as highly active electrocatalysts for the oxygen reduction reaction
    Sun, Lingna
    Liao, Biyan
    Ren, Xiangzhong
    Li, Yongliang
    Zhang, Peixin
    Deng, Libo
    Gao, Yuan
    ELECTROCHIMICA ACTA, 2017, 235 : 543 - 552
  • [25] Mussel-inspired nitrogen-doped graphene nanosheet supported manganese oxide nanowires as highly efficient electrocatalysts for oxygen reduction reaction
    Lee, Taemin
    Jeon, Eun Kyung
    Kim, Byeong-Su
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (17) : 6167 - 6173
  • [26] Isolated Co Atoms Anchored on Defective Nitrogen-doped Carbon Graphene as Efficient Oxygen Reduction Reaction Electrocatalysts
    Peng Rao
    Junming Luo
    Daoxiong Wu
    Jing Li
    Qi Chen
    Peilin Deng
    Yijun Shen
    Xinlong Tian
    Energy & Environmental Materials, 2023, (03) : 243 - 248
  • [27] VN Quantum Dots Anchored Uniformly onto Nitrogen-Doped Graphene as Efficient Electrocatalysts for Oxygen Reduction Reaction
    Wang, Jing
    Wang, Lan
    Yang, Shubin
    NANO, 2018, 13 (04)
  • [28] Isolated Co Atoms Anchored on Defective Nitrogen-doped Carbon Graphene as Efficient Oxygen Reduction Reaction Electrocatalysts
    Rao, Peng
    Luo, Junming
    Wu, Daoxiong
    Li, Jing
    Chen, Qi
    Deng, Peilin
    Shen, Yijun
    Tian, Xinlong
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (03)
  • [29] Noble metal-free electrocatalysts for the oxygen reduction reaction based on iron and nitrogen-doped porous graphene
    Bo, Xiangjie
    Li, Mian
    Han, Ce
    Zhang, Yufan
    Nsabimana, Anaclet
    Guo, Liping
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (03) : 1058 - 1067
  • [30] Configuration Sensitivity of Electrocatalytic Oxygen Reduction Reaction on Nitrogen-Doped Graphene
    Zhang, Yifan
    Fu, Hongquan
    He, Changchun
    Zhang, Hai
    Li, Yuhang
    Yang, Guangxing
    Cao, Yonghai
    Wang, Hongjuan
    Peng, Feng
    Yang, Xiaobao
    Yu, Hao
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (26): : 6187 - 6193