Isolated Co Atoms Anchored on Defective Nitrogen-doped Carbon Graphene as Efficient Oxygen Reduction Reaction Electrocatalysts

被引:29
|
作者
Rao, Peng [1 ]
Luo, Junming [1 ]
Wu, Daoxiong [1 ]
Li, Jing [1 ]
Chen, Qi [1 ]
Deng, Peilin [1 ]
Shen, Yijun [1 ]
Tian, Xinlong [1 ]
机构
[1] Hainan Univ, Sch Chem Engn & Technol, State Key Lab Marine Resource Utilizat South Chin, Hainan Prov Key Lab Fine Chem, Haikou 570228, Hainan, Peoples R China
基金
中国国家自然科学基金;
关键词
movable type printing method; oxygen reduction reaction; single-atom catalyst; zinc-air battery;
D O I
10.1002/eem2.12371
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Oxygen reduction reaction (ORR) is the heart of many new energy conversions and storage devices, such as metal-air batteries and fuel cells. However, ORR is currently facing the dilemma of sluggish intrinsic kinetics and the noble electrocatalysts of high price and low reserves. In this work, isolated Co atoms anchored on defective nitrogen-doped carbon graphene single-atom catalyst (Co-SAC/NC) are synthesized via the proposed movable type printing method. The prepared Co-SAC/NC catalyst demonstrates admirable ORR performance, with a high half-wave potential of 0.884 V in alkaline electrolytes and outstanding durability. In addition, an assembled zinc-air battery with prepared Co-SAC/NC as air-cathode catalyst displays a high-peak power density of 179 mW cm(-2) and a high-specific capacity (757 mAh g(-1)). Density functional theory calculations confirm that the true active sites of the prepared catalyst are Co-N-4 moieties, and further reveal a significantly electronic structure evolution of Co sites in the ORR process, in which the project density of states and local magnetic moment of Co atom varies during its whole reaction process. This work not only paves a new avenue for synthesizing SACs as robust electrocatalysts, but also provides an electronic-level insight into the evolution of the electronic structure of single-atom catalysts.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Isolated Co Atoms Anchored on Defective Nitrogen-doped Carbon Graphene as Efficient Oxygen Reduction Reaction Electrocatalysts
    Peng Rao
    Junming Luo
    Daoxiong Wu
    Jing Li
    Qi Chen
    Peilin Deng
    Yijun Shen
    Xinlong Tian
    Energy & Environmental Materials, 2023, (03) : 243 - 248
  • [2] Fe atoms anchored on defective nitrogen doped hollow carbon spheres as efficient electrocatalysts for oxygen reduction reaction
    Su, Panpan
    Huang, Wenjuan
    Zhang, Jiangwei
    Guharoy, Utsab
    Du, Qinggang
    Sun, Qiao
    Jiang, Qike
    Cheng, Yi
    Yang, Jie
    Zhang, Xiaoli
    Liu, Yongsheng
    Jiang, San Ping
    Liu, Jian
    NANO RESEARCH, 2021, 14 (04) : 1069 - 1077
  • [3] Fe atoms anchored on defective nitrogen doped hollow carbon spheres as efficient electrocatalysts for oxygen reduction reaction
    Panpan Su
    Wenjuan Huang
    Jiangwei Zhang
    Utsab Guharoy
    Qinggang Du
    Qiao Sun
    Qike Jiang
    Yi Cheng
    Jie Yang
    Xiaoli Zhang
    Yongsheng Liu
    San Ping Jiang
    Jian Liu
    Nano Research, 2021, 14 : 1069 - 1077
  • [4] VN Quantum Dots Anchored Uniformly onto Nitrogen-Doped Graphene as Efficient Electrocatalysts for Oxygen Reduction Reaction
    Wang, Jing
    Wang, Lan
    Yang, Shubin
    NANO, 2018, 13 (04)
  • [5] Nitrogen-Doped Graphene Oxide Electrocatalysts for the Oxygen Reduction Reaction
    Dumont, Joseph H.
    Martinez, Ulises
    Artyushkova, Kateryna
    Purdy, Geraldine M.
    Dattelbaum, Andrew M.
    Zelenay, Piotr
    Mohite, Aditya
    Atanassov, Plamen
    Gupta, Gautam
    ACS APPLIED NANO MATERIALS, 2019, 2 (03): : 1675 - 1682
  • [6] Nitrogen-doped Bimetallic Carbon Nanosheets as Efficient Electrocatalysts for Oxygen Reduction Reaction
    Zhao, Quiping
    Hu, Guanqun
    Zhao, Shengbin
    Meng, Xiangzhi
    Meng, Fanchao
    Li, Chunlei
    Cong, Yuanyuan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (07): : 1 - 16
  • [7] Nitrogen-doped Graphene Loaded with Cobalt Nanoparticles as Efficient Electrocatalysts for Oxygen Reduction Reaction
    Zhang, Hong
    Li, Yanping
    Han, Gaoyi
    CHEMISTRYSELECT, 2022, 7 (04):
  • [8] Ultrasmall Co2P2O7 nanocrystals anchored on nitrogen-doped graphene as efficient electrocatalysts for the oxygen reduction reaction
    Li, Kaidi
    Guo, Mingjing
    Yan, Ya
    Zhan, Ke
    Yang, Junhe
    Zhao, Bin
    Li, Jianqiang
    NEW JOURNAL OF CHEMISTRY, 2019, 43 (17) : 6492 - 6499
  • [9] Cobalt decorated nitrogen-doped carbon bowls as efficient electrocatalysts for the oxygen reduction reaction
    Zhong, Haobin
    Shi, Changwei
    Li, Jiantao
    Yu, Ruohan
    Yu, Qiang
    Liu, Haoyun
    Yao, Yao
    Wu, Jinsong
    Zhou, Liang
    Mai, Liqiang
    Chemical Communications, 2020, 56 (32): : 4488 - 4491
  • [10] Cobalt decorated nitrogen-doped carbon bowls as efficient electrocatalysts for the oxygen reduction reaction
    Zhong, Haobin
    Shi, Changwei
    Li, Jiantao
    Yu, Ruohan
    Yu, Qiang
    Liu, Haoyun
    Yao, Yao
    Wu, Jinsong
    Zhou, Liang
    Mai, Liqiang
    CHEMICAL COMMUNICATIONS, 2020, 56 (32) : 4488 - 4491