Ultra-stable sodium metal-iodine batteries enabled by an in-situ solid electrolyte interphase

被引:66
|
作者
Tian, Huajun [1 ]
Shao, Hezhu [2 ]
Chen, Yi [1 ]
Fang, Xiaqin [1 ]
Xiong, Pan [1 ]
Sun, Bing [1 ]
Notten, Peter H. L. [3 ,4 ]
Wang, Guoxiu [1 ]
机构
[1] Univ Technol Sydney, Fac Sci, Sch Math & Phys Sci, Ctr Clean Energy Technol, Sydney, NSW 2007, Australia
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[3] Eindhoven Univ Technol, Dept Chem Engn & Chem, NL-5600 MB Eindhoven, Netherlands
[4] Forschungszentrum Julich, Fundamental Electrochem IEK9, D-52425 Julich, Germany
基金
澳大利亚研究理事会;
关键词
Sodium metal anodes; In-situ reaction; NaI; Solid electrolyte interface; Sodium-iodine batteries; GRAPHENE FILMS; ION BATTERIES; HIGH-ENERGY; SULFUR; ANODES; CHALLENGES; REACTIVITY; CHEMISTRY; SALT;
D O I
10.1016/j.nanoen.2018.12.084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High capacity sodium (Na) metal anodes open up new opportunities for developing next-generation rechargeable batteries with both high power and high energy densities. However, many challenges still plagued their practical application, including low plating/stripping Coulombic efficiency (CE) and dendrite growth after repeated cycle inducing safety issue. Especially, the sodium metal is less stable in organic (i.e. carbonate-based) electrolytes than lithium metal, due to the more unstable organic solid-electrolyte interface (SEI). Herein, we report a facile technology to stabilize sodium metal anode and inhibit the growth of sodium dendrites. The in-situ ultrathin NaI SEI layer successfully endows best-performance Na/I-2 metal batteries (> 2200 cycles) with high capacity (210 mA h g(-1) at 0.5 C) based on the conversion reaction chemistry with higher discharge voltage plateau (> 2.7 V) and lower overpotential (134 mV) due to the fast charge transfer dynamics and interfacial stability compared with pristine Na anode. The detailed theoretical calculations and experimental results elucidate that NaI layer has a much lower diffusion barrier compared to that of NaF (NaF as one the most commonly found inorganic components in Na-based SEI layer), and actually facilitates more uniform sodium deposition. This work provides a new avenue for designing low-cost, high-performance and high-safety sodium metal-iodine batteries and other metal-iodine batteries.
引用
收藏
页码:692 / 702
页数:11
相关论文
共 50 条
  • [31] In-situ nanoscale insights into the evolution of solid electrolyte interphase shells: revealing interfacial degradation in lithium metal batteries
    Yang Shi
    Gui-Xian Liu
    Jing Wan
    Rui Wen
    Li-Jun Wan
    Science China Chemistry, 2021, 64 : 734 - 738
  • [32] Sodium reservoir to compensate sodium loss for ultra-stable anode-less sodium metal batteries
    Chen, Wanhao
    Shen, Xiaowei
    Huan, Yunfei
    Yan, Chenglin
    Qian, Tao
    Liu, Xuejun
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2024, 130 (07):
  • [33] In-situ nanoscale insights into the evolution of solid electrolyte interphase shells: revealing interfacial degradation in lithium metal batteries
    Yang Shi
    GuiXian Liu
    Jing Wan
    Rui Wen
    LiJun Wan
    Science China(Chemistry), 2021, (05) : 734 - 738
  • [34] In-situ nanoscale insights into the evolution of solid electrolyte interphase shells: revealing interfacial degradation in lithium metal batteries
    Yang Shi
    Gui-Xian Liu
    Jing Wan
    Rui Wen
    Li-Jun Wan
    Science China Chemistry, 2021, 64 (05) : 734 - 738
  • [35] In-situ nanoscale insights into the evolution of solid electrolyte interphase shells: revealing interfacial degradation in lithium metal batteries
    Shi, Yang
    Liu, Gui-Xian
    Wan, Jing
    Wen, Rui
    Wan, Li-Jun
    SCIENCE CHINA-CHEMISTRY, 2021, 64 (05) : 734 - 738
  • [36] Hybrid solid electrolyte interphases formed in conventional carbonate electrolyte enable high-voltage and ultra-stable magnesium metal batteries
    Yong Xie
    Huawei Song
    Siyang Ye
    Fei Tian
    Junjie Xie
    Danni Lei
    Chengxin Wang
    Journal of Energy Chemistry, 2023, 78 (03) : 315 - 324
  • [37] Interpenetrating network-reinforced gel polymer electrolyte for ultra-stable lithium-iodine batteries
    Jiang, Ying
    Huang, Peng
    Tong, Minman
    Qi, Bingxin
    Sun, Tao
    Xian, Zhongyun
    Yan, Wen
    Lai, Chao
    CARBON ENERGY, 2024, 6 (06)
  • [38] Ethanol Based Electrolyte for Ultra-stable Zn/NiHCF Batteries
    Wang, Jiang
    Duan, Jingying
    Zhang, Yimin
    Chen, Mingming
    Wang, Chengyang
    CHEMISTRYSELECT, 2022, 7 (36):
  • [39] An ultra-stable lithium plating process enabled by the nanoscale interphase of a macromolecular additive
    Jia, Mengmin
    Guo, Yawei
    Bian, Haiyan
    Zhang, Qipeng
    Zhang, Lan
    Zhang, Suojiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (45) : 23844 - 23850
  • [40] Temperature-responsive solid-electrolyte-interphase enabling stable sodium metal batteries in a wide temperature range
    Liu, Xuyang
    Zheng, Xueying
    Qin, Xiao
    Deng, Ya
    Dai, Yiming
    Zhao, Tong
    Wang, Zhongqiang
    Yang, Hao
    Luo, Wei
    NANO ENERGY, 2022, 103