Ultra-stable sodium metal-iodine batteries enabled by an in-situ solid electrolyte interphase

被引:66
|
作者
Tian, Huajun [1 ]
Shao, Hezhu [2 ]
Chen, Yi [1 ]
Fang, Xiaqin [1 ]
Xiong, Pan [1 ]
Sun, Bing [1 ]
Notten, Peter H. L. [3 ,4 ]
Wang, Guoxiu [1 ]
机构
[1] Univ Technol Sydney, Fac Sci, Sch Math & Phys Sci, Ctr Clean Energy Technol, Sydney, NSW 2007, Australia
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[3] Eindhoven Univ Technol, Dept Chem Engn & Chem, NL-5600 MB Eindhoven, Netherlands
[4] Forschungszentrum Julich, Fundamental Electrochem IEK9, D-52425 Julich, Germany
基金
澳大利亚研究理事会;
关键词
Sodium metal anodes; In-situ reaction; NaI; Solid electrolyte interface; Sodium-iodine batteries; GRAPHENE FILMS; ION BATTERIES; HIGH-ENERGY; SULFUR; ANODES; CHALLENGES; REACTIVITY; CHEMISTRY; SALT;
D O I
10.1016/j.nanoen.2018.12.084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High capacity sodium (Na) metal anodes open up new opportunities for developing next-generation rechargeable batteries with both high power and high energy densities. However, many challenges still plagued their practical application, including low plating/stripping Coulombic efficiency (CE) and dendrite growth after repeated cycle inducing safety issue. Especially, the sodium metal is less stable in organic (i.e. carbonate-based) electrolytes than lithium metal, due to the more unstable organic solid-electrolyte interface (SEI). Herein, we report a facile technology to stabilize sodium metal anode and inhibit the growth of sodium dendrites. The in-situ ultrathin NaI SEI layer successfully endows best-performance Na/I-2 metal batteries (> 2200 cycles) with high capacity (210 mA h g(-1) at 0.5 C) based on the conversion reaction chemistry with higher discharge voltage plateau (> 2.7 V) and lower overpotential (134 mV) due to the fast charge transfer dynamics and interfacial stability compared with pristine Na anode. The detailed theoretical calculations and experimental results elucidate that NaI layer has a much lower diffusion barrier compared to that of NaF (NaF as one the most commonly found inorganic components in Na-based SEI layer), and actually facilitates more uniform sodium deposition. This work provides a new avenue for designing low-cost, high-performance and high-safety sodium metal-iodine batteries and other metal-iodine batteries.
引用
收藏
页码:692 / 702
页数:11
相关论文
共 50 条
  • [21] Ultra-high voltage solid-state Li metal batteries enabled by in-situ construction of cathode electrolyte interphase through synergistic dual-anion decomposition
    Jiang, Haolong
    Han, Yu
    Li, Cong
    Sun, Weiwei
    Zheng, Jiayi
    Zhu, Yuhao
    Zheng, Chunman
    Li, Yunsong
    Lin, Yuxiao
    Guo, Qingpeng
    Wang, Hui
    Xie, Kai
    ELECTROCHIMICA ACTA, 2023, 457
  • [22] Stable Li-Metal Batteries Enabled by in Situ Gelation of an Electrolyte and In-Built Fluorinated Solid Electrolyte Interface
    Jiao, Xiaoxia
    Wang, Jin
    Gao, Guixia
    Zhang, Xuezhi
    Fu, Cuimei
    Wang, Lina
    Wang, Yonggang
    Liu, Tianxi
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (50) : 60054 - 60062
  • [23] Stable Solid Electrolyte Interphase for Long-Life Potassium Metal Batteries
    Park, Jimin
    Jeong, Yeseul
    Alfaruqi, Muhammad Hilmy
    Liu, Yangyang
    Xu, Xieyu
    Xiong, Shizhao
    Jung, Min-Gi
    Jung, Hun-Gi
    Kim, Jaekook
    Hwang, Jang-Yeon
    Sun, Yang-Kook
    ACS ENERGY LETTERS, 2022, 7 (01): : 401 - 409
  • [24] In-situ and quantitative analyses on solid electrolyte interphase
    Russell, Selena M.
    von Cresce, Arthur
    Baker, David
    Xu, Kang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [25] Gradient solid electrolyte interphase induced by bisfuoroacetamide for stable lithium metal batteries
    Qin Zhao
    Tianyi Ma
    Journal of Energy Chemistry, 2022, (03) : 676 - 679
  • [26] Stable Anion-Derived Solid Electrolyte Interphase in Lithium Metal Batteries
    Li, Tao
    Zhang, Xue-Qiang
    Yao, Nan
    Yao, Yu-Xing
    Hou, Li-Peng
    Chen, Xiang
    Zhou, Ming-Yue
    Huang, Jia-Qi
    Zhang, Qiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (42) : 22683 - 22687
  • [27] Gradient solid electrolyte interphase induced by bisfluoroacetamide for stable lithium metal batteries
    Zhao, Qin
    Ma, Tianyi
    JOURNAL OF ENERGY CHEMISTRY, 2022, 66 : 676 - 678
  • [28] Homogeneous and mechanically stable solid-electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries
    Zhang, Qian-Kui
    Zhang, Xue-Qiang
    Wan, Jing
    Yao, Nan
    Song, Ting-Lu
    Xie, Jin
    Hou, Li-Peng
    Zhou, Ming-Yue
    Chen, Xiang
    Li, Bo-Quan
    Wen, Rui
    Peng, Hong-Jie
    Zhang, Qiang
    Huang, Jia-Qi
    NATURE ENERGY, 2023, 8 (07) : 725 - 735
  • [29] Hybrid solid electrolyte interphases formed in conventional carbonate electrolyte enable high-voltage and ultra-stable magnesium metal batteries
    Xie, Yong
    Song, Huawei
    Ye, Siyang
    Tian, Fei
    Xie, Junjie
    Lei, Danni
    Wang, Chengxin
    JOURNAL OF ENERGY CHEMISTRY, 2023, 78 : 315 - 324
  • [30] Enabling Safe Sodium Metal Batteries by Solid Electrolyte Interphase Engineering: A Review
    Matios, Edward
    Wang, Huan
    Wang, Chuanlong
    Li, Weiyang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (23) : 9758 - 9780