Leveraging Stochasticity for In Situ Learning in Binarized Deep Neural Networks

被引:2
|
作者
Pyle, Steven D. [1 ]
Sapp, Justin D. [1 ]
DeMara, Ronald F. [2 ]
机构
[1] Univ Cent Florida, Comp Engn, Orlando, FL 32816 USA
[2] Univ Cent Florida, Dept Elect & Comp Engn, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/MC.2019.2906133
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A recent thrust in deep neural network (DNN) research has been toward binary approaches for compact and energy-sparing neuromorphic architectures utilizing emerging devices. However, approaches to deal with device process variations and the realization of stochastic behavior intrinsically within neural circuits remain underexplored. Herein, we leverage a novel probabilistic spintronic device for low-energy recognition operations that improves DNN performance through active in situ learning via the mitigation of device reliability challenges.
引用
收藏
页码:30 / 39
页数:10
相关论文
共 50 条
  • [41] Stochasticity and robustness in spiking neural networks
    Olin-Ammentorp, Wilkie
    Beckmann, Karsten
    Schuman, Catherine D.
    Plank, James S.
    Cady, Nathaniel C.
    [J]. NEUROCOMPUTING, 2021, 419 : 23 - 36
  • [42] Learning with Deep Photonic Neural Networks
    Leelar, Bhawani Shankar
    Shivaleela, E. S.
    Srinivas, T.
    [J]. 2017 IEEE WORKSHOP ON RECENT ADVANCES IN PHOTONICS (WRAP), 2017,
  • [43] Deep Learning with Random Neural Networks
    Gelenbe, Erol
    Yin, Yongha
    [J]. PROCEEDINGS OF SAI INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS) 2016, VOL 2, 2018, 16 : 450 - 462
  • [44] Deep Learning with Random Neural Networks
    Gelenbe, Erol
    Yin, Yongha
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1633 - 1638
  • [45] Deep learning in spiking neural networks
    Tavanaei, Amirhossein
    Ghodrati, Masoud
    Kheradpisheh, Saeed Reza
    Masquelier, Timothee
    Maida, Anthony
    [J]. NEURAL NETWORKS, 2019, 111 : 47 - 63
  • [46] Deep learning in neural networks: An overview
    Schmidhuber, Juergen
    [J]. NEURAL NETWORKS, 2015, 61 : 85 - 117
  • [47] Deep associative learning for neural networks
    Liu, Jia
    Zhang, Wenhua
    Liu, Fang
    Xiao, Liang
    [J]. NEUROCOMPUTING, 2021, 443 : 222 - 234
  • [48] Fast learning in Deep Neural Networks
    Chandra, B.
    Sharma, Rajesh K.
    [J]. NEUROCOMPUTING, 2016, 171 : 1205 - 1215
  • [49] Shortcut learning in deep neural networks
    Robert Geirhos
    Jörn-Henrik Jacobsen
    Claudio Michaelis
    Richard Zemel
    Wieland Brendel
    Matthias Bethge
    Felix A. Wichmann
    [J]. Nature Machine Intelligence, 2020, 2 : 665 - 673
  • [50] Artificial neural networks and deep learning
    Geubbelmans, Melvin
    Rousseau, Axel-Jan
    Burzykowski, Tomasz
    Valkenborg, Dirk
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2024, 165 (02) : 248 - 251