Leveraging Stochasticity for In Situ Learning in Binarized Deep Neural Networks

被引:2
|
作者
Pyle, Steven D. [1 ]
Sapp, Justin D. [1 ]
DeMara, Ronald F. [2 ]
机构
[1] Univ Cent Florida, Comp Engn, Orlando, FL 32816 USA
[2] Univ Cent Florida, Dept Elect & Comp Engn, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
461.4 Ergonomics and Human Factors Engineering - 731.1 Control Systems - 961 Systems Science;
D O I
10.1109/MC.2019.2906133
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A recent thrust in deep neural network (DNN) research has been toward binary approaches for compact and energy-sparing neuromorphic architectures utilizing emerging devices. However, approaches to deal with device process variations and the realization of stochastic behavior intrinsically within neural circuits remain underexplored. Herein, we leverage a novel probabilistic spintronic device for low-energy recognition operations that improves DNN performance through active in situ learning via the mitigation of device reliability challenges.
引用
收藏
页码:30 / 39
页数:10
相关论文
共 50 条
  • [21] iDropout: Leveraging Deep Taylor Decomposition for the Robustness of Deep Neural Networks
    Schreckenberger, Christian
    Bartelt, Christian
    Stuckenschmidt, Heiner
    ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS: OTM 2019 CONFERENCES, 2019, 11877 : 113 - 126
  • [22] Binary Bayesian Neural Networks for Efficient Uncertainty Estimation Leveraging Inherent Stochasticity of Spintronic Devices
    Ahmed, Soyed Tuhin
    Danouchi, Kamal
    Muench, Christopher
    Prenat, Guillaume
    Anghel, Lorena
    Tahoori, Mehdi B.
    PROCEEDINGS OF THE 17TH ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES, NANOARCH 2022, 2022,
  • [23] Accelerating Deep Learning by Binarized Hardware
    Takamaeda-Yamazaki, Shinya
    Ueyoshi, Kodai
    Ando, Kota
    Uematsu, Ryota
    Hirose, Kazutoshi
    Ikebe, Masayuki
    Asai, Tetsuya
    Motomura, Masato
    2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 1045 - 1051
  • [24] Public subsidies and innovation: a doubly robust machine learning approach leveraging deep neural networks
    Kerda Varaku
    Robin Sickles
    Empirical Economics, 2023, 64 : 3121 - 3165
  • [25] Public subsidies and innovation: a doubly robust machine learning approach leveraging deep neural networks
    Varaku, Kerda
    Sickles, Robin
    EMPIRICAL ECONOMICS, 2023, 64 (06) : 3121 - 3165
  • [26] Neural Spike Sorting Using Binarized Neural Networks
    Valencia, Daniel
    Alimohammad, Amir
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2021, 29 : 206 - 214
  • [27] Evaluating FPGA Acceleration on Binarized Neural Networks and Quantized Neural Networks
    Surapally, Sarala K.
    Yang, Xiaokun
    Harman, Thomas L.
    Shih, Liwen
    2022 INTERNATIONAL SYMPOSIUM ON MEASUREMENT AND CONTROL IN ROBOTICS (ISMCR), 2022, : 159 - 163
  • [28] Memristor crossbar array for binarized neural networks
    Kim, Yong
    Jeong, Won Hee
    Tran, Son Bao
    Woo, Hyo Cheon
    Kim, Jihun
    Hwang, Cheol Seong
    Min, Kyeong-Sik
    Choi, Byung Joon
    AIP ADVANCES, 2019, 9 (04)
  • [29] Bimodal-Distributed Binarized Neural Networks
    Rozen, Tal
    Kimhi, Moshe
    Chmiel, Brian
    Mendelson, Avi
    Baskin, Chaim
    MATHEMATICS, 2022, 10 (21)
  • [30] Leveraging the Bhattacharyya coefficient for uncertainty quantification in deep neural networks
    Van Molle, Pieter
    Verbelen, Tim
    Vankeirsbilck, Bert
    De Vylder, Jonas
    Diricx, Bart
    Kimpe, Tom
    Simoens, Pieter
    Dhoedt, Bart
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (16): : 10259 - 10275