Scattering of Graphene Plasmons by Defects in the Graphene Sheet

被引:49
|
作者
Luis Garcia-Pomar, Juan
Nikitin, Alexey Yu.
Martin-Moreno, Luis [1 ]
机构
[1] CSIC Univ Zaragoza, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain
关键词
scattering; graphene plasmons; conductivity defect; plasmon propagation; PHOTONICS;
D O I
10.1021/nn400342v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A theoretical study is presented on the scattering of graphene surface plasmons (GSPs) by defects In the graphene sheet they propagate in. These defects can be either natural (as domain boundaries, ripples, and cracks, among others) or induced by an external gate. The scattering is shown to be governed by an integral equation, derived from a plane wave expansion of the fields, which in general must be solved numerically, but it provides useful analytical results for small defects. Two main cases are considered: smooth variations of the graphene conductivity (characterized by a Gaussian conductivity profile) and sharp variations (represented by islands with different conductivity). In general, reflection largely dominates over radiation out of the graphene sheet. However, in the case of sharply defined conductivity islands, there are some values of island size and frequency where the reflectance vanishes and, correspondingly, the radiation out-of-plane is the main scattering process. For smooth defects, the reflectance spectra present a single maximum at the condition k(p)a approximate to root 2, where k(p) is the GSP wavevector and a is the spatial width of the defect. In contrast the reflectance spectra of sharp defects present periodic oscillations with period k(p)'a, where k(p)' is the GSP wavelength inside the defect. Finally, the case of cracks (gaps in the graphene conductivity) is considered, showing that the reflectance is practically unity for gap widths larger than one-tenth of the GSP wavelength.
引用
收藏
页码:4988 / 4994
页数:7
相关论文
共 50 条
  • [41] Photonic crystal for graphene plasmons
    Xiong, L.
    Forsythe, C.
    Jung, M.
    McLeod, A. S.
    Sunku, S. S.
    Shao, Y. M.
    Ni, G. X.
    Sternbach, A. J.
    Liu, S.
    Edgar, J. H.
    Mele, E. J.
    Fogler, M. M.
    Shvets, G.
    Dean, C. R.
    Basov, D. N.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [42] Gas identification with graphene plasmons
    Hu, Hai
    Yang, Xiaoxia
    Guo, Xiangdong
    Khaliji, Kaveh
    Biswas, Sudipta Romen
    Garcia de Abajo, F. Javier
    Low, Tony
    Sun, Zhipei
    Dai, Qing
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [43] A model for terahertz plasmons in graphene
    Every, A. G.
    Warmbier, R.
    Quandt, A.
    OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (02) : 1 - 6
  • [44] Quantum computing with graphene plasmons
    I. Alonso Calafell
    J. D. Cox
    M. Radonjić
    J. R. M. Saavedra
    F. J. García de Abajo
    L. A. Rozema
    P. Walther
    npj Quantum Information, 5
  • [45] Graphene, plasmons and transformation optics
    Huidobro, P. A.
    Kraft, M.
    Kun, R.
    Maier, S. A.
    Pendry, J. B.
    JOURNAL OF OPTICS, 2016, 18 (04)
  • [46] Quantum computing with graphene plasmons
    Calafell, I. Alonso
    Cox, J. D.
    Radonjic, M.
    Saavedra, J. R. M.
    Garcia de Abajo, F. J.
    Rozema, L. A.
    Walther, P.
    NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [47] Plasmons in graphene moire superlattices
    Ni, G. X.
    Wang, H.
    Wu, J. S.
    Fei, Z.
    Goldflam, M. D.
    Keilmann, F.
    Oezyilmaz, B.
    Neto, A. H. Castro
    Xie, X. M.
    Fogler, M. M.
    Basov, D. N.
    NATURE MATERIALS, 2015, 14 (12) : 1217 - 1222
  • [48] Graphene versus metal plasmons
    David Pile
    Nature Photonics, 2013, 7 : 420 - 420
  • [49] Plasmons in a planar graphene superlattice
    P. V. Ratnikov
    A. P. Silin
    JETP Letters, 2015, 102 : 713 - 719
  • [50] About Plasmons and Plasmonics in Graphene
    Quandt, Alexander
    Warmbier, Robert
    2015 17TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2015,