Quantum computing with graphene plasmons

被引:0
|
作者
I. Alonso Calafell
J. D. Cox
M. Radonjić
J. R. M. Saavedra
F. J. García de Abajo
L. A. Rozema
P. Walther
机构
[1] University of Vienna,Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics
[2] The Barcelona Institute of Science and Technology,ICFO
[3] ICREA-Institucio Catalana de Recerca i Estudis Avancats,Institut de Ciencies Fotoniques
[4] University of Belgrade,Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Among the various approaches to quantum computing, all-optical architectures are especially promising due to the robustness and mobility of single photons. However, the creation of the two-photon quantum logic gates required for universal quantum computing remains a challenge. Here we propose a universal two-qubit quantum logic gate, where qubits are encoded in surface plasmons in graphene nanostructures, that exploits graphene's strong third-order nonlinearity and long plasmon lifetimes to enable single-photon-level interactions. In particular, we utilize strong two-plasmon absorption in graphene nanoribbons, which can greatly exceed single-plasmon absorption to create a “square-root-of-swap” that is protected by the quantum Zeno effect against evolution into undesired failure modes. Our gate does not require any cryogenic or vacuum technology, has a footprint of a few hundred nanometers, and reaches fidelities and success rates well above the fault-tolerance threshold, suggesting that graphene plasmonics offers a route towards scalable quantum technologies.
引用
收藏
相关论文
共 50 条
  • [1] Quantum computing with graphene plasmons
    Calafell, I. Alonso
    Cox, J. D.
    Radonjic, M.
    Saavedra, J. R. M.
    Garcia de Abajo, F. J.
    Rozema, L. A.
    Walther, P.
    NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [2] Author Correction: Quantum computing with graphene plasmons
    I. Alonso Calafell
    J. D. Cox
    M. Radonjić
    J. R. M. Saavedra
    F. J. García de Abajo
    L. A. Rozema
    P. Walther
    npj Quantum Information, 5 (1)
  • [3] Quantum computing with graphene plasmons (vol 5, 37, 2019)
    Calafell, I. Alonso
    Cox, J. D.
    Radonjic, M.
    Saavedra, J. R. M.
    Garcia de Abajo, F. J.
    Rozema, L. A.
    Walther, P.
    NPJ QUANTUM INFORMATION, 2019, 5
  • [4] Quantum junction plasmons in graphene dimers
    Thongrattanasiri, Sukosin
    Manjavacas, Alejandro
    Nordlander, Peter
    Javier Garcia de Abajo, F.
    LASER & PHOTONICS REVIEWS, 2013, 7 (02) : 297 - 302
  • [5] Regular quantum plasmons in segments of graphene nanoribbons
    Wang, Bao-Ji
    Lin, Jiazhou
    Ke, San-Huang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2022, 33 (11):
  • [6] Nonlocal Quantum Effects in Plasmons of Graphene Superlattices
    Brey, Luis
    Stauber, T.
    Martin-Moreno, L.
    Gomez-Santos, G.
    PHYSICAL REVIEW LETTERS, 2020, 124 (25)
  • [7] Graphene, electrons, plasmons, and quantum: A perfect match
    Javier Gacia de Abajo, F.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C131 - C131
  • [8] Quantum Effects in the Nonlinear Response of Graphene Plasmons
    Cox, Joel D.
    Silveiro, Ivan
    Javier Garcia de Abajo, F.
    ACS NANO, 2016, 10 (02) : 1995 - 2003
  • [9] Nonlinear quantum logic with colliding graphene plasmons
    Calajo, Giuseppe
    Jenke, Philipp K.
    Rozema, Lee A.
    Walther, Philip
    Chang, Darrick E.
    Cox, Joel D.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [10] Comparative Analysis of Classical and Quantum Plasmons in Graphene Nanostructures
    You, Jian Wei
    Panoiu, Nicolae C.
    2018 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES (SUM), 2018, : 141 - 142