On the structure of covariant phase observables

被引:9
|
作者
Pellonpää, JP [1 ]
机构
[1] Univ Turku, Dept Phys, Turku 20014, Finland
关键词
D O I
10.1063/1.1446663
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the mathematical structure of covariant phase observables. Such observables can alternatively be expressed as phase matrices, as sequences of unit vectors, as sequences of phase states, or as equivalence classes of covariant trace-preserving operations. Covariant generalized operator measures are defined by structure matrices which form a W-*-algebra with phase matrices as its subset. The properties of the Radon-Nikodym derivatives of phase probability measures are studied. (C) 2002 American Institute of Physics.
引用
收藏
页码:1299 / 1308
页数:10
相关论文
共 50 条
  • [1] Covariant phase observables
    Pellonpää, JP
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2003, 51 (2-3): : 207 - 210
  • [2] The phase representation of covariant phase observables
    Pellonpää, JP
    [J]. JOURNAL OF MODERN OPTICS, 2003, 50 (14) : 2127 - 2131
  • [3] Covariant phase observables in quantum mechanics
    Lahti, P
    Pellonpää, JP
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (10) : 4688 - 4698
  • [4] Gauge covariant observables and phase operators
    Dubin, DA
    Hennings, MA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (02): : 273 - 279
  • [5] Covariant localizations in the torus and the phase observables
    Cassinelli, G
    De Vito, E
    Lahti, P
    Pellonpää, JP
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (02) : 693 - 704
  • [6] Covariant phase difference observables in quantum mechanics
    Heinonen, T
    Lahti, P
    Pellonpää, JP
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (02) : 466 - 479
  • [7] The Pegg-Barnett formalism and covariant phase observables
    Lahti, P
    Pellonpää, JP
    [J]. PHYSICA SCRIPTA, 2002, 66 (01) : 66 - 70
  • [8] Characterization of informational completeness for covariant phase space observables
    Kiukas, J.
    Lahti, P.
    Schultz, J.
    Werner, R. F.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (10)
  • [9] DENSITIES OF COVARIANT OBSERVABLES
    CATTANEO, U
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (04) : 659 - 664
  • [10] Covariant observables on a nonunimodular group
    Kiukas, J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (01) : 491 - 503