On the structure of covariant phase observables

被引:9
|
作者
Pellonpää, JP [1 ]
机构
[1] Univ Turku, Dept Phys, Turku 20014, Finland
关键词
D O I
10.1063/1.1446663
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the mathematical structure of covariant phase observables. Such observables can alternatively be expressed as phase matrices, as sequences of unit vectors, as sequences of phase states, or as equivalence classes of covariant trace-preserving operations. Covariant generalized operator measures are defined by structure matrices which form a W-*-algebra with phase matrices as its subset. The properties of the Radon-Nikodym derivatives of phase probability measures are studied. (C) 2002 American Institute of Physics.
引用
收藏
页码:1299 / 1308
页数:10
相关论文
共 50 条
  • [41] Continuous-time histories: Observables, probabilities, phase space structure and the classical limit
    Anastopoulos, C
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (08) : 3225 - 3259
  • [42] Phase space observables and isotypic spaces
    Cassinelli, G
    De Vito, E
    Lahti, P
    Levrero, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (09) : 5883 - 5896
  • [43] COVARIANT FACTOR ORDERING OF GAUGE SYSTEMS USING GHOST VARIABLES .2. STATES AND OBSERVABLES
    MCMULLAN, D
    PATERSON, J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (02) : 487 - 497
  • [44] The pion wave function in covariant light-front dynamicsApplication to the calculation of various physical observables
    O. Leitner
    J. -F. Mathiot
    N. A. Tsirova
    [J]. The European Physical Journal A, 2011, 47
  • [45] Phase Covariant Qubit Dynamics and Divisibility
    S. N. Filippov
    A. N. Glinov
    L. Leppäjärvi
    [J]. Lobachevskii Journal of Mathematics, 2020, 41 : 617 - 630
  • [46] Phase-covariant quantum cloning
    Bruss, D
    Cinchetti, M
    D'Ariano, GM
    Macchiavello, C
    [J]. PHYSICAL REVIEW A, 2000, 62 (01): : 7
  • [47] Covariant phase space with null boundaries
    Shi, Kai
    Wang, Xuan
    Xiu, Yihong
    Zhang, Hongbao
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2021, 73 (12)
  • [48] Secondary calculus and the covariant phase space
    Vitagliano, Luca
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (04) : 426 - 447
  • [49] On covariant phase space and the variational bicomplex
    Reyes, EG
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2004, 43 (05) : 1267 - 1286
  • [50] Phase-covariant quantum benchmarks
    Calsamiglia, J.
    Aspachs, M.
    Munoz-Tapia, R.
    Bagan, E.
    [J]. PHYSICAL REVIEW A, 2009, 79 (05):