Twisted derivations of Hopf algebras

被引:3
|
作者
Davydov, A. [1 ]
机构
[1] Univ New Hampshire, Dept Math & Stat, Durham, NH 03824 USA
关键词
BRAUER GROUP;
D O I
10.1016/j.jpaa.2012.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper we introduce the notion of twisted derivation of a bialgebra. Twisted derivations appear as infinitesimal symmetries of the category of representations. More precisely they are infinitesimal versions of twisted automorphisms of bialgebras [4]. Twisted derivations naturally form a Lie algebra (the tangent algebra of the group of twisted automorphisms). Moreover this Lie algebra fits into a crossed module (tangent to the crossed module of twisted automorphisms). Here we calculate this crossed module for universal enveloping algebras and for Sweedler's Hopf algebra. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:567 / 582
页数:16
相关论文
共 50 条
  • [41] STRUCTURE THEOREMS FOR BICOMODULE ALGEBRAS OVER QUASI-HOPF ALGEBRAS, WEAK HOPF ALGEBRAS, AND BRAIDED HOPF ALGEBRAS
    Dello, Jeroen
    Panaite, Florin
    Van Oystaeyen, Freddy
    Zhang, Yinhuo
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (11) : 4609 - 4636
  • [42] THE EQUIVALENCE OF CERTAIN CATEGORIES OF TWISTED LIE AND HOPF-ALGEBRAS OVER A COMMUTATIVE RING
    STOVER, CR
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1993, 86 (03) : 289 - 326
  • [43] Some Properties of a Right Twisted Smash Product A*H over Weak Hopf Algebras
    Yan, Yan
    Ji, Nan
    Zhou, Lihui
    Zhang, Qiuna
    INFORMATION COMPUTING AND APPLICATIONS, PT 1, 2010, 105 : 101 - 108
  • [44] Lie Algebras of Derivations and Resolvent Algebras
    Detlev Buchholz
    Hendrik Grundling
    Communications in Mathematical Physics, 2013, 320 : 455 - 467
  • [45] Lie Algebras of Derivations and Resolvent Algebras
    Buchholz, Detlev
    Grundling, Hendrik
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 320 (02) : 455 - 467
  • [46] Hopf algebras for ternary algebras
    Goze, M.
    de Traubenberg, M. Rausch
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (06)
  • [47] On boson algebras as Hopf algebras
    Tsohantjis, I
    Paolucci, A
    Jarvis, PD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (11): : 4075 - 4087
  • [48] Baxter algebras and Hopf algebras
    Andrews, GE
    Guo, L
    Keigher, W
    Ono, K
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (11) : 4639 - 4656
  • [49] Centrification of algebras and Hopf algebras
    Rumynin, Dmitriy
    Westaway, Matthew
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2022, 65 (01): : 155 - 169
  • [50] DERIVATIONS OF LIE ALGEBRAS
    TOGO, S
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (04) : 690 - &