In the paper we introduce the notion of twisted derivation of a bialgebra. Twisted derivations appear as infinitesimal symmetries of the category of representations. More precisely they are infinitesimal versions of twisted automorphisms of bialgebras [4]. Twisted derivations naturally form a Lie algebra (the tangent algebra of the group of twisted automorphisms). Moreover this Lie algebra fits into a crossed module (tangent to the crossed module of twisted automorphisms). Here we calculate this crossed module for universal enveloping algebras and for Sweedler's Hopf algebra. (C) 2012 Elsevier B.V. All rights reserved.
机构:
Zhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Peoples R ChinaZhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Peoples R China
Liu, Ling
Guo, Qiao-ling
论文数: 0引用数: 0
h-index: 0
机构:
Jiaxing Univ, Coll Math & Informat Engn, Jiaxing, Peoples R ChinaZhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Peoples R China
机构:
Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R ChinaSoutheast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China
Wang, S. H.
Van Daele, A.
论文数: 0引用数: 0
h-index: 0
机构:
Katholieke Univ Leuven, Dept Math, Heverlee, BelgiumSoutheast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China
Van Daele, A.
Zhang, Y. H.
论文数: 0引用数: 0
h-index: 0
机构:
Victoria Univ Wellington, Sch Math Stat & Comp Sci, Wellington, New Zealand
LUC, Dept Math, Diepenbeek, BelgiumSoutheast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China