Maximal Abelian Dimensions in Some Families of Nilpotent Lie Algebras

被引:5
|
作者
Benjumea, Juan C. [2 ]
Nunez, Juan [2 ]
Tenorio, Angel F. [1 ]
机构
[1] Univ Pablo Olavide, Dept Econ Metodos Cuantitat & Ha Econ, Escuela Politecn Super, Seville 41013, Spain
[2] Univ Seville, Fac Matemat, Dept Geometria & Topol, E-41080 Seville, Spain
关键词
Nilpotent Lie algebras; Maximal abelian dimension; Heisenberg algebras; BLACK-HOLES;
D O I
10.1007/s10468-010-9260-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the maximal abelian dimension of a Lie algebra, that is, the maximal value for the dimensions of its abelian Lie subalgebras. Indeed, we compute the maximal abelian dimension for every nilpotent Lie algebra of dimension less than 7 and for the Heisenberg algebra , with . In this way, an algorithmic procedure is introduced and applied to compute the maximal abelian dimension for any arbitrary nilpotent Lie algebra with an arbitrary dimension. The maximal abelian dimension is also given for some general families of nilpotent Lie algebras.
引用
收藏
页码:697 / 713
页数:17
相关论文
共 50 条
  • [41] SOME NILPOTENT LIE-ALGEBRAS OF EVEN DIMENSION
    SEELEY, C
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1992, 45 (01) : 71 - 77
  • [42] COHOMOLOGY OF NILPOTENT LIE ALGEBRAS - APPLICATION TO STUDY OF VARIETY OF NILPOTENT LIE ALGEBRAS
    VERGNE, M
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1970, 98 (02): : 81 - &
  • [43] Anti-abelian nearly Kähler structures on nilpotent Lie algebras
    E. Peyghan
    L. Nourmohammadifar
    Periodica Mathematica Hungarica, 2018, 77 : 291 - 317
  • [44] Nilpotent Lie algebras with two centralizer dimensions over a finite field
    Kundu, Rijubrata
    Naik, Tushar Kanta
    Singh, Anupam
    JOURNAL OF ALGEBRA, 2023, 633 : 362 - 388
  • [45] Computation of positively graded filiform nilpotent Lie algebras in low dimensions
    Edwards, John
    Krome, Cameron
    Payne, Tracy L.
    JOURNAL OF SYMBOLIC COMPUTATION, 2022, 108 : 73 - 90
  • [46] MAXIMAL ABELIAN SUBALGEBRAS OF REAL AND COMPLEX SYMPLECTIC LIE-ALGEBRAS
    PATERA, J
    WINTERNITZ, P
    ZASSENHAUS, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (08) : 1973 - 1985
  • [47] On the maximal Abelian subgroups of diagonalizable automorphisms of simple classical Lie algebras
    Havlicek, M
    Patera, J
    Pelantova, E
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 116 - 120
  • [48] Abelian subalgebras in some particular types of Lie algebras
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E401 - E408
  • [49] Some properties of the c-nilpotent multiplier of Lie algebras
    Salemkar, Ali Reza
    Riyahi, Zahra
    JOURNAL OF ALGEBRA, 2012, 370 : 320 - 325
  • [50] Free nilpotent and nilpotent quadratic Lie algebras
    Benito, P.
    de-la-Concepcion, D.
    Laliena, J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 519 : 296 - 326