Maximal Abelian Dimensions in Some Families of Nilpotent Lie Algebras

被引:5
|
作者
Benjumea, Juan C. [2 ]
Nunez, Juan [2 ]
Tenorio, Angel F. [1 ]
机构
[1] Univ Pablo Olavide, Dept Econ Metodos Cuantitat & Ha Econ, Escuela Politecn Super, Seville 41013, Spain
[2] Univ Seville, Fac Matemat, Dept Geometria & Topol, E-41080 Seville, Spain
关键词
Nilpotent Lie algebras; Maximal abelian dimension; Heisenberg algebras; BLACK-HOLES;
D O I
10.1007/s10468-010-9260-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the maximal abelian dimension of a Lie algebra, that is, the maximal value for the dimensions of its abelian Lie subalgebras. Indeed, we compute the maximal abelian dimension for every nilpotent Lie algebra of dimension less than 7 and for the Heisenberg algebra , with . In this way, an algorithmic procedure is introduced and applied to compute the maximal abelian dimension for any arbitrary nilpotent Lie algebra with an arbitrary dimension. The maximal abelian dimension is also given for some general families of nilpotent Lie algebras.
引用
收藏
页码:697 / 713
页数:17
相关论文
共 50 条
  • [21] Abelian Ideals of Maximal Dimension for Solvable Lie Algebras
    Burde, Dietrich
    Ceballos, Manuel
    JOURNAL OF LIE THEORY, 2012, 22 (03) : 741 - 756
  • [22] Algorithm to compute the maximal abelian dimension of Lie algebras
    Ceballos, M.
    Nunez, J.
    Tenorio, A. F.
    COMPUTING, 2009, 84 (3-4) : 231 - 239
  • [23] MAXIMAL ABELIAN SUBALGEBRAS OF PSEUDOORTHOGONAL LIE-ALGEBRAS
    HUSSIN, V
    WINTERNITZ, P
    ZASSENHAUS, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 173 : 125 - 163
  • [24] ON THE COHOMOLOGY OF SOME NILPOTENT LIE-ALGEBRAS
    KHAKIMDZHANOV, YB
    MATHEMATICS OF THE USSR-SBORNIK, 1990, 67 (01): : 99 - 116
  • [25] Some nilpotent Lie algebras and its applications
    Goze, M
    Khakimdjanov, Y
    ALGEBRA AND OPERATOR THEORY, 1998, : 49 - 64
  • [26] Some problems about Nilpotent Lie Algebras
    Cabezas, JM
    Pastor, E
    Camacho, LM
    Gómez, JR
    Jiménez-Merchán, A
    Reyes, J
    Rodríguez, I
    RING THEORY AND ALGEBRAIC GEOMETRY, 2001, 221 : 59 - 86
  • [27] Complete Lie algebras with maximal-rank nilpotent radicals
    ZHU Linsheng and MENG Daoji Department of Mathematics
    Department of Mathematics
    Chinese Science Bulletin, 1999, (04) : 312 - 315
  • [28] Finite dimensional nilpotent Lie algebras with isomorphic maximal subalgebras
    Holmes, K
    Stitzinger, E
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (06) : 2501 - 2521
  • [29] Complete Lie algebras with maximal-rank nilpotent radicals
    Zhu, LS
    Meng, DJ
    CHINESE SCIENCE BULLETIN, 1999, 44 (04): : 312 - 315
  • [30] KAC-MOODY LIE-ALGEBRAS AND THE CLASSIFICATION OF NILPOTENT LIE-ALGEBRAS OF MAXIMAL RANK
    SANTHAROUBANE, LJ
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (06): : 1215 - 1239