Machine learning could improve innovation policy

被引:1
|
作者
Furman, Jeffrey L. [1 ,2 ]
Teodoridis, Florenta [3 ]
机构
[1] Boston Univ, Boston, MA 02215 USA
[2] Natl Bur Econ Res, Cambridge, MA 02138 USA
[3] Univ Southern Calif, Los Angeles, CA 90007 USA
关键词
D O I
10.1038/s42256-020-0155-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
引用
收藏
页码:84 / 84
页数:1
相关论文
共 50 条
  • [21] Poor enforcement could jeopardize China's drug innovation policy
    Jia, Hepeng
    NATURE BIOTECHNOLOGY, 2006, 24 (10) : 1182 - 1183
  • [22] Poor enforcement could jeopardize China's drug innovation policy
    Hepeng Jia
    Nature Biotechnology, 2006, 24 : 1182 - 1183
  • [23] Policy learning and the 'cluster-flavoured innovation policy' in Finland
    Sotarauta, Markku
    ENVIRONMENT AND PLANNING C-GOVERNMENT AND POLICY, 2012, 30 (05): : 780 - 795
  • [24] Use of exclusive data for corporate research on machine learning and artificial intelligence: Implications for innovation and competition policy
    Kwon, Seokbeom
    Porter, Alan L.
    TECHNOLOGY IN SOCIETY, 2025, 81
  • [25] Probabilistic Machine Learning Could Eliminate No Fault Found
    Teixeira, Rodrigo E.
    Morris, Kari E.
    Sautter, F. Christian
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON THROUGH-LIFE ENGINEERING SERVICES, 2015, 38 : 124 - 128
  • [26] Could Machine Learning Break the Convection Parameterization Deadlock?
    Gentine, P.
    Pritchard, M.
    Rasp, S.
    Reinaudi, G.
    Yacalis, G.
    GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (11) : 5742 - 5751
  • [27] Could machine learning fuel a reproducibility crisis in science?
    Elizabeth Gibney
    Nature, 2022, 608 : 250 - 251
  • [28] Machine learning for continuous innovation in battery technologies
    Muratahan Aykol
    Patrick Herring
    Abraham Anapolsky
    Nature Reviews Materials, 2020, 5 : 725 - 727
  • [29] Moving machine learning from innovation to production
    de Morsier Picterra, Frank
    GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2024, 38 (02):
  • [30] Flashlight: Enabling Innovation in Tools for Machine Learning
    Kahn, Jacob
    Pratap, Vineel
    Likhomanenko, Tatiana
    Xu, Qiantong
    Hannun, Awni
    Cai, Jeff
    Tomasello, Paden
    Lee, Ann
    Grave, Edouard
    Avidov, Gilad
    Steiner, Benoit
    Liptchinsky, Vitaliy
    Synnaeve, Gabriel
    Collobert, Ronan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022, : 10557 - 10574