C. elegans discriminates colors to guide foraging

被引:22
|
作者
Ghosh, D. Dipon [1 ,2 ]
Lee, Dongyeop [2 ]
Jin, Xin [1 ]
Horvitz, H. Robert [2 ]
Nitabach, Michael N. [1 ,3 ,4 ]
机构
[1] Yale Univ, Dept Cellular & Mol Physiol, New Haven, CT 06520 USA
[2] MIT, Dept Biol, Howard Hughes Med Inst, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Yale Univ, Dept Genet, New Haven, CT 06520 USA
[4] Yale Univ, Dept Neurosci, New Haven, CT 06520 USA
关键词
CAENORHABDITIS-ELEGANS; PATHOGENIC BACTERIA; PATHWAY; JNK; ACTIVATION; LIGHT; AVOIDANCE; NEURONS; MKK7;
D O I
10.1126/science.abd3010
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Color detection is used by animals of diverse phyla to navigate colorful natural environments and is thought to require evolutionarily conserved opsin photoreceptor genes. We report that Caenorhabditis elegans roundworms can discriminate between colors despite the fact that they lack eyes and opsins. Specifically, we found that white light guides C. elegans foraging decisions away from a blue-pigment toxin secreted by harmful bacteria. These foraging decisions are guided by specific blue-to-amber ratios of light. The color specificity of color-dependent foraging varies notably among wild C. elegans strains, which indicates that color discrimination is ecologically important. We identified two evolutionarily conserved cellular stress response genes required for opsin-independent, color-dependent foraging by C. elegans, and we speculate that cellular stress response pathways can mediate spectral discrimination by photosensitive cells and organisms-even by those lacking opsins.
引用
收藏
页码:1059 / +
页数:29
相关论文
共 50 条
  • [31] Expansion microscopy of C. elegans
    Yu, Chih-Chieh
    Barry, Nicholas C.
    Wassie, Asmamaw T.
    Sinha, Anubhav
    Bhattacharya, Abhishek
    Asano, Shoh
    Zhang, Chi
    Chen, Fei
    Hobert, Oliver
    Goodman, Miriam B.
    Haspel, Gal
    Boyden, Edward S.
    ELIFE, 2020, 9 : 1 - 78
  • [32] More neuropeptides in C. elegans
    Tavernarakis N.
    Genome Biology, 3 (2)
  • [33] CLASPs in the C. elegans embryo
    Espiritu, Eugenel B.
    Krueger, Lori E.
    Ye, Anna A.
    Rose, Lesilee S.
    DEVELOPMENTAL BIOLOGY, 2010, 344 (01) : 457 - 457
  • [34] Modal Locomotion of C. elegans
    Mujika, A.
    Merino, S.
    Leskovsky, P.
    Epelde, G.
    Oyarzun, D.
    Otaduy, M. A.
    XXIX SPANISH COMPUTER GRAPHICS CONFERENCE (CEIG19), 2019, : 1 - 8
  • [35] C. elegans — an innate choice?
    Jane Alfred
    Nature Reviews Genetics, 2002, 3 : 651 - 651
  • [36] Autophagy in C. elegans development
    Palmisano, Nicholas J.
    Melendez, Alicia
    DEVELOPMENTAL BIOLOGY, 2019, 447 (01) : 103 - 125
  • [37] C. elegans model of ALS
    不详
    ATLA-ALTERNATIVES TO LABORATORY ANIMALS, 2015, 43 (03): : 151 - 152
  • [38] Transcriptional adaptation in C. elegans
    Le Bras, Alexandra
    LAB ANIMAL, 2020, 49 (03) : 72 - 72
  • [39] C. elegans Embryonic Morphogenesis
    Vuong-Brender, Thanh T. K.
    Yang, Xinyi
    Labouesse, Michel
    ESSAYS ON DEVELOPMENTAL BIOLOGY, PT A, 2016, 116 : 597 - +
  • [40] Mapping Mutations in C. elegans
    Lambie, Eric J.
    CAENORHABDITIS ELEGANS: MOLECULAR GENETICS AND DEVELOPMENT, SECOND EDITION, 2011, 106 : 3 - 22