C. elegans discriminates colors to guide foraging

被引:22
|
作者
Ghosh, D. Dipon [1 ,2 ]
Lee, Dongyeop [2 ]
Jin, Xin [1 ]
Horvitz, H. Robert [2 ]
Nitabach, Michael N. [1 ,3 ,4 ]
机构
[1] Yale Univ, Dept Cellular & Mol Physiol, New Haven, CT 06520 USA
[2] MIT, Dept Biol, Howard Hughes Med Inst, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Yale Univ, Dept Genet, New Haven, CT 06520 USA
[4] Yale Univ, Dept Neurosci, New Haven, CT 06520 USA
关键词
CAENORHABDITIS-ELEGANS; PATHOGENIC BACTERIA; PATHWAY; JNK; ACTIVATION; LIGHT; AVOIDANCE; NEURONS; MKK7;
D O I
10.1126/science.abd3010
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Color detection is used by animals of diverse phyla to navigate colorful natural environments and is thought to require evolutionarily conserved opsin photoreceptor genes. We report that Caenorhabditis elegans roundworms can discriminate between colors despite the fact that they lack eyes and opsins. Specifically, we found that white light guides C. elegans foraging decisions away from a blue-pigment toxin secreted by harmful bacteria. These foraging decisions are guided by specific blue-to-amber ratios of light. The color specificity of color-dependent foraging varies notably among wild C. elegans strains, which indicates that color discrimination is ecologically important. We identified two evolutionarily conserved cellular stress response genes required for opsin-independent, color-dependent foraging by C. elegans, and we speculate that cellular stress response pathways can mediate spectral discrimination by photosensitive cells and organisms-even by those lacking opsins.
引用
收藏
页码:1059 / +
页数:29
相关论文
共 50 条
  • [21] Discoidin domain receptors guide axons along longitudinal tracts in C. elegans
    Unsoeld, Thomas
    Park, Ja-On
    Hutter, Harald
    DEVELOPMENTAL BIOLOGY, 2013, 374 (01) : 142 - 152
  • [22] In vivo metabolic flux profiling with stable isotopes discriminates sites and quantifies effects of mitochondrial dysfunction in C. elegans
    Vergano, Samantha Schrier
    Rao, Meera
    McCormack, Shana
    Ostrovsky, Julian
    Clarke, Colleen
    Preston, Judith
    Bennett, Michael J.
    Yudkoff, Marc
    Xiao, Rui
    Falk, Marni J.
    MOLECULAR GENETICS AND METABOLISM, 2014, 111 (03) : 331 - 341
  • [23] Neuroendocrine gene expression coupling of interoceptive bacterial food cues to foraging behavior of C. elegans
    Boor, Sonia A.
    Meisel, Joshua D.
    Kim, Dennis H.
    ELIFE, 2024, 12
  • [24] nlr-1/CNTNAP regulates dopamine circuit structure and foraging behaviors in C. elegans
    Bastien, Brandon L.
    Haury, William R.
    Smisko, William R.
    Hart, Michael P.
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [25] Centriole assembly in C. elegans
    Pelletier, L
    O'Toole, ET
    Schwager, A
    Hyman, AA
    Müller-Reichert, T
    EUROPEAN JOURNAL OF CELL BIOLOGY, 2006, 85 : 122 - 123
  • [26] C. elegans: A Practical Approach
    Louise Michaelson
    Heredity, 2000, 85 (1) : 99 - 99
  • [27] TRP channels in C. elegans
    Kahn-Kirby, AH
    Bargmann, CI
    ANNUAL REVIEW OF PHYSIOLOGY, 2006, 68 : 719 - 736
  • [28] Cancer Research with C. elegans
    不详
    ATLA-ALTERNATIVES TO LABORATORY ANIMALS, 2012, 40 (04): : 193 - 193
  • [29] Hyperoxic responses in C. elegans
    Payvar, F
    DeMatteo, A
    Hazinski, TA
    PEDIATRIC RESEARCH, 2000, 47 (04) : 480A - 480A
  • [30] RNA Processing in C. elegans
    Morton, J. Jason
    Blumenthal, Thomas
    CAENORHABDITIS ELEGANS: MOLECULAR GENETICS AND DEVELOPMENT, SECOND EDITION, 2011, 106 : 187 - 217