Positive-Unlabeled Learning in Streaming Networks

被引:15
|
作者
Chang, Shiyu [1 ]
Zhang, Yang [1 ]
Tang, Jiliang [2 ]
Yin, Dawei [3 ]
Chang, Yi [3 ]
Hasegawa-Johnson, Mark A. [1 ]
Huang, Thomas S. [1 ]
机构
[1] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
[2] Michigan State Univ, Comp Sci & Engn, E Lansing, MI 48824 USA
[3] Yahoo Inc, Yahoo Labs, Sunnyvale, CA 94089 USA
关键词
PU learning; dynamic network; online learning; continuous time; streaming link prediction; streaming recommendation;
D O I
10.1145/2939672.2939744
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data of many problems in real-world systems such as link prediction and one-class recommendation share common characteristics. First, data are in the form of positive-unlabeled (PU) measurements (e.g. Twitter "following", Facebook "like", etc.) that do not provide negative information, which can be naturally represented as networks. Second, in the era of big data, such data are generated temporally-ordered, continuously and rapidly, which determines its streaming nature. These common characteristics allow us to unify many problems into a novel framework PU learning in streaming networks. In this paper, a principled probabilistic approach SPU is proposed to leverage the characteristics of the streaming PU inputs. In particular, SPU captures temporal dynamics and provides real-time adaptations and predictions by identifying the potential negative signals concealed in unlabeled data. Our empirical results on various real-world datasets demonstrate the effectiveness of the proposed framework over other state-of-the-art methods in both link prediction and recommendation.
引用
收藏
页码:755 / 764
页数:10
相关论文
共 50 条
  • [41] Information-Theoretic Representation Learning for Positive-Unlabeled Classification
    Sakai, Tomoya
    Niu, Gang
    Sugiyama, Masashi
    NEURAL COMPUTATION, 2021, 33 (01) : 244 - 268
  • [42] Unsupervised Body Hair Detection by Positive-Unlabeled Learning in Photoacoustic Image
    Kikkawa, Ryo
    Kajita, Hiroki
    Imanishi, Nobuaki
    Aiso, Sadakazu
    Bise, Ryoma
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3349 - 3352
  • [43] Entropy Weight Allocation: Positive-unlabeled Learning via Optimal Transport
    Gu, Wen
    Zhang, Teng
    Jin, Hai
    PROCEEDINGS OF THE 2022 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2022, : 37 - 45
  • [44] Positive-unlabeled learning for the prediction of conformational B-cell epitopes
    Jing Ren
    Qian Liu
    John Ellis
    Jinyan Li
    BMC Bioinformatics, 16
  • [45] EPuL: An Enhanced Positive-Unlabeled Learning Algorithm for the Prediction of Pupylation Sites
    Nan, Xuanguo
    Bao, Lingling
    Zhao, Xiaosa
    Zhao, Xiaowei
    Sangaiah, Arun Kumar
    Wang, Gai-Ge
    Ma, Zhiqiang
    MOLECULES, 2017, 22 (09):
  • [46] Positive-Unlabeled Learning for inferring drug interactions based on heterogeneous attributes
    Hameed, Pathima Nusrath
    Verspoor, Karin
    Kusljic, Snezana
    Halgamuge, Saman
    BMC BIOINFORMATICS, 2017, 18
  • [47] Computational Identification of Lysine Glutarylation Sites Using Positive-Unlabeled Learning
    Ju, Zhe
    Wang, Shi-Yun
    CURRENT GENOMICS, 2020, 21 (03) : 204 - 211
  • [48] An Integrated Framework of Positive-Unlabeled and Imbalanced Learning for Landslide Susceptibility Mapping
    Fu, Zijin
    Ma, Hao
    Wang, Fawu
    Dou, Jie
    Zhang, Bo
    Fang, Zhice
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 15596 - 15611
  • [49] Positive-Unlabeled Learning for inferring drug interactions based on heterogeneous attributes
    Pathima Nusrath Hameed
    Karin Verspoor
    Snezana Kusljic
    Saman Halgamuge
    BMC Bioinformatics, 18
  • [50] Intrusion Detection based on Non-negative Positive-unlabeled Learning
    Lv, Sicai
    Liu, Yang
    Liu, Zhiyao
    Chao, Wang
    Wu, Chenrui
    Wang, Bailing
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 1015 - 1020