Positive-Unlabeled Learning in Streaming Networks

被引:15
|
作者
Chang, Shiyu [1 ]
Zhang, Yang [1 ]
Tang, Jiliang [2 ]
Yin, Dawei [3 ]
Chang, Yi [3 ]
Hasegawa-Johnson, Mark A. [1 ]
Huang, Thomas S. [1 ]
机构
[1] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
[2] Michigan State Univ, Comp Sci & Engn, E Lansing, MI 48824 USA
[3] Yahoo Inc, Yahoo Labs, Sunnyvale, CA 94089 USA
关键词
PU learning; dynamic network; online learning; continuous time; streaming link prediction; streaming recommendation;
D O I
10.1145/2939672.2939744
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data of many problems in real-world systems such as link prediction and one-class recommendation share common characteristics. First, data are in the form of positive-unlabeled (PU) measurements (e.g. Twitter "following", Facebook "like", etc.) that do not provide negative information, which can be naturally represented as networks. Second, in the era of big data, such data are generated temporally-ordered, continuously and rapidly, which determines its streaming nature. These common characteristics allow us to unify many problems into a novel framework PU learning in streaming networks. In this paper, a principled probabilistic approach SPU is proposed to leverage the characteristics of the streaming PU inputs. In particular, SPU captures temporal dynamics and provides real-time adaptations and predictions by identifying the potential negative signals concealed in unlabeled data. Our empirical results on various real-world datasets demonstrate the effectiveness of the proposed framework over other state-of-the-art methods in both link prediction and recommendation.
引用
收藏
页码:755 / 764
页数:10
相关论文
共 50 条
  • [21] Spotting Fake Reviews using Positive-Unlabeled Learning
    Li, Huayi
    Liu, Bing
    Mukherjee, Arjun
    Shao, Jidong
    COMPUTACION Y SISTEMAS, 2014, 18 (03): : 467 - 475
  • [22] Theoretical Comparisons of Positive-Unlabeled Learning against Positive-Negative Learning
    Niu, Gang
    du Plessis, Marthinus C.
    Sakai, Tomoya
    Ma, Yao
    Sugiyama, Masashi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [23] Bootstrap Latent Prototypes for graph positive-unlabeled learning
    Liang, Chunquan
    Tian, Yi
    Zhao, Dongmin
    Li, Mei
    Pan, Shirui
    Zhang, Hongming
    Wei, Jicheng
    INFORMATION FUSION, 2024, 112
  • [24] Positive-Unlabeled Compression on the Cloud
    Xu, Yixing
    Wang, Yunhe
    Chen, Hanting
    Han, Kai
    Xu, Chunjing
    Tao, Dacheng
    Xu, Chang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [25] Positive-Unlabeled Domain Adaptation
    Sonntag, Jonas
    Behrens, Gunnar
    Schmidt-Thieme, Lars
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 66 - 75
  • [26] GradPU: Positive-Unlabeled Learning via Gradient Penalty and Positive Upweighting
    Dai, Songmin
    Li, Xiaoqiang
    Zhou, Yue
    Ye, Xichen
    Liu, Tong
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 6, 2023, : 7296 - +
  • [27] PUe: Biased Positive-Unlabeled Learning Enhancement by Causal Inference
    Wang, Xutao
    Chen, Hanting
    Guo, Tianyu
    Wang, Yunhe
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [28] PULNS: Positive-Unlabeled Learning with Effective Negative Sample Selector
    Luo, Chuan
    Zhao, Pu
    Chen, Chen
    Qiao, Bo
    Du, Chao
    Zhang, Hongyu
    Wu, Wei
    Cai, Shaowei
    He, Bing
    Rajmohan, Saravanakumar
    Lin, Qingwei
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 8784 - 8792
  • [29] Screening drug-target interactions with positive-unlabeled learning
    Lihong Peng
    Wen Zhu
    Bo Liao
    Yu Duan
    Min Chen
    Yi Chen
    Jialiang Yang
    Scientific Reports, 7
  • [30] A Positive-Unlabeled Learning Algorithm for Urban Flood Susceptibility Modeling
    Li, Wenkai
    Liu, Yuanchi
    Liu, Ziyue
    Gao, Zhen
    Huang, Huabing
    Huang, Weijun
    LAND, 2022, 11 (11)