Batalin-Vilkovisky algebras and the noncommutative Poincare duality of Koszul Calabi-Yau algebras

被引:14
|
作者
Chen, Xiaojun [1 ]
Yang, Song [1 ]
Zhou, Guodong [2 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
[2] E China Normal Univ, Shanghai Key Lab PMMP, Dept Math, Shanghai 200241, Peoples R China
关键词
CYCLIC HOMOLOGY; DUALIZING COMPLEXES; COHOMOLOGY; RING;
D O I
10.1016/j.jpaa.2015.11.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a Koszul Calabi-Yau algebra. We show that there exists an isomorphism of Batalin-Vilkovisky algebras between the Hochschild cohomology ring of A and that of its Koszul dual algebra A(1). This confirms (a generalization of) a conjecture of R. Rouquier. (c) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2500 / 2532
页数:33
相关论文
共 50 条
  • [31] Calabi-Yau Algebras Viewed as Deformations of Poisson Algebras
    Berger, Roland
    Pichereau, Anne
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (03) : 735 - 773
  • [32] GERSTENHABER AND BATALIN-VILKOVISKY ALGEBRAS; ALGEBRAIC, GEOMETRIC, AND PHYSICAL ASPECTS
    Roger, Claude
    ARCHIVUM MATHEMATICUM, 2009, 45 (04): : 301 - 324
  • [33] Stably Calabi-Yau algebras and skew group algebras
    XiaoLan Yu
    DiMing Lu
    Science China Mathematics, 2011, 54 : 1343 - 1356
  • [34] Hopf Action on Calabi-Yau algebras
    Liu, L. -Y.
    Wu, Q. -S.
    Zhu, C.
    NEW TRENDS IN NONCOMMUTATIVE ALGEBRA, 2012, 562 : 189 - 209
  • [35] Twisted bi-symplectic structure on Koszul twisted Calabi-Yau algebras
    Xiaojun Chen
    Alimjon Eshmatov
    Farkhod Eshmatov
    Leilei Liu
    Selecta Mathematica, 2022, 28
  • [36] The derived non-commutative Poisson bracket on Koszul Calabi-Yau algebras
    Chen, Xiaojun
    Eshmatov, Alimjon
    Eshmatov, Farkhod
    Yang, Song
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2017, 11 (01) : 111 - 160
  • [37] Solving the Noncommutative Batalin-Vilkovisky Equation
    Barannikov, Serguei
    LETTERS IN MATHEMATICAL PHYSICS, 2013, 103 (06) : 605 - 628
  • [38] On symmetric, smooth and Calabi-Yau algebras
    Braun, Amiram
    JOURNAL OF ALGEBRA, 2007, 317 (02) : 519 - 533
  • [39] Smash products of Calabi-Yau algebras by Hopf algebras
    Le Meur, Patrick
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2019, 13 (03) : 887 - 961
  • [40] Non-commutative Batalin-Vilkovisky algebras, homotopy lie algebras and the courant bracket
    Bering, K.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 274 (02) : 297 - 341