Batalin-Vilkovisky algebras and the noncommutative Poincare duality of Koszul Calabi-Yau algebras

被引:14
|
作者
Chen, Xiaojun [1 ]
Yang, Song [1 ]
Zhou, Guodong [2 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
[2] E China Normal Univ, Shanghai Key Lab PMMP, Dept Math, Shanghai 200241, Peoples R China
关键词
CYCLIC HOMOLOGY; DUALIZING COMPLEXES; COHOMOLOGY; RING;
D O I
10.1016/j.jpaa.2015.11.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a Koszul Calabi-Yau algebra. We show that there exists an isomorphism of Batalin-Vilkovisky algebras between the Hochschild cohomology ring of A and that of its Koszul dual algebra A(1). This confirms (a generalization of) a conjecture of R. Rouquier. (c) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2500 / 2532
页数:33
相关论文
共 50 条
  • [21] Calabi-Yau algebras and their deformations
    He, Ji-Wei
    Van Oystaeyen, Fred
    Zhang, Yinhuo
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2013, 56 (03): : 335 - 347
  • [22] Noncommutative Mather-Yau theorem and its applications to Calabi-Yau algebras
    Hua, Zheng
    Zhou, Guisong
    MATHEMATISCHE ANNALEN, 2023, 386 (3-4) : 1605 - 1639
  • [23] On Yang-Baxter equation and Calabi-Yau property of Koszul algebras
    Mizomov, I.
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (11) : 4614 - 4621
  • [24] Calabi-Yau Frobenius algebras
    Eu, Ching-Hwa
    Schedler, Travis
    JOURNAL OF ALGEBRA, 2009, 321 (03) : 774 - 815
  • [25] Calabi-Yau algebras and superpotentials
    Michel Van den Bergh
    Selecta Mathematica, 2015, 21 : 555 - 603
  • [26] The Koszul–Tate type resolution for Gerstenhaber–Batalin–Vilkovisky algebras
    Jeehoon Park
    Donggeon Yhee
    Journal of Homotopy and Related Structures, 2019, 14 : 455 - 475
  • [27] Stably Calabi-Yau algebras and skew group algebras
    Yu XiaoLan
    Lu DiMing
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (07) : 1343 - 1356
  • [28] Noncommutative Poisson structures, derived representation schemes and Calabi-Yau algebras
    Berest, Yuri
    Chen, Xiaojun
    Eshmatov, Farkhod
    Ramadoss, Ajay
    MATHEMATICAL ASPECTS OF QUANTIZATION, 2012, 583 : 219 - +
  • [29] Twisted bi-symplectic structure on Koszul twisted Calabi-Yau algebras
    Chen, Xiaojun
    Eshmatov, Alimjon
    Eshmatov, Farkhod
    Liu, Leilei
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (03):
  • [30] Stably Calabi-Yau algebras and skew group algebras
    YU XiaoLan & LU DiMing Department of Mathematics
    Science China Mathematics, 2011, 54 (07) : 1343 - 1356