A Bayesian hierarchically structured prior for rare-variant association testing

被引:2
|
作者
Yang, Yi [1 ,2 ]
Basu, Saonli [1 ]
Zhang, Lin [1 ]
机构
[1] Univ Minnesota, Div Biostat, Minneapolis, MN USA
[2] Columbia Univ, Dept Biostat, New York, NY 10032 USA
关键词
Bayesian adaptive fused lasso; Crohn' s disease; hierarchical variable selection; pairwise weighting scheme; rare variants;
D O I
10.1002/gepi.22379
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Although genome-wide association studies have been widely used to identify associations between complex diseases and genetic variants, standard single-variant analyses often have limited power when applied to rare variants. To overcome this problem, set-based methods have been developed with the aim of boosting power by borrowing strength from multiple rare variants. We propose the adaptive hierarchically structured variable selection (HSVS-A) before test for association of rare variants in a set with continuous or dichotomous phenotypes and to estimate the effect of individual rare variants simultaneously. HSVS-A has the flexibility to integrate a pairwise weighting scheme, which adaptively induces desirable correlations among variants of similar significance such that we can borrow information from potentially causal and noncausal rare variants to boost power. Simulation studies show that for both continuous and dichotomous phenotypes, HSVS-A is powerful when there are multiple causal rare variants, either in the same or opposite direction of effect, with the presence of a large number of noncausal variants. We also apply HSVS-A to the Wellcome Trust Case Control Consortium Crohn's disease data for testing the association of Crohn's disease with rare variants in pathways. HSVS-A identifies two pathways harboring novel protective rare variants for Crohn's disease.
引用
收藏
页码:413 / 424
页数:12
相关论文
共 50 条
  • [41] Multi-trait analysis of rare-variant association summary statistics using MTAR
    Lan Luo
    Judong Shen
    Hong Zhang
    Aparna Chhibber
    Devan V. Mehrotra
    Zheng-Zheng Tang
    Nature Communications, 11
  • [42] gsSKAT: Rapid gene set analysis and multiple testing correction for rare-variant association studies using weighted linear kernels
    Larson, Nicholas B.
    McDonnell, Shannon
    Albright, Lisa Cannon
    Teerlink, Craig
    Stanford, Janet
    Ostrander, Elaine A.
    Isaacs, William B.
    Xu, Jianfeng
    Cooney, Kathleen A.
    Lange, Ethan
    Schleutker, Johanna
    Carpten, John D.
    Powell, Isaac
    Bailey-Wilson, Joan E.
    Cussenot, Olivier
    Cancel-Tassin, Geraldine
    Giles, Graham G.
    MacInnis, Robert J.
    Maier, Christiane
    Whittemore, Alice S.
    Hsieh, Chih-Lin
    Wiklund, Fredrik
    Catolona, William J.
    Foulkes, William
    Mandal, Diptasri
    Eeles, Rosalind
    Kote-Jarai, Zsofia
    Ackerman, Michael J.
    Olson, Timothy M.
    Klein, Christopher J.
    Thibodeau, Stephen N.
    Schaid, Daniel J.
    GENETIC EPIDEMIOLOGY, 2017, 41 (04) : 297 - 308
  • [43] Multi-SKAT: General framework to test for rare-variant association with multiple phenotypes
    Dutta, Diptavo
    Scott, Laura
    Boehnke, Michael
    Lee, Seunggeun
    GENETIC EPIDEMIOLOGY, 2019, 43 (01) : 4 - 23
  • [44] A unified test of linkage analysis and rare-variant association for analysis of pedigree sequence data
    Hao Hu
    Jared C Roach
    Hilary Coon
    Stephen L Guthery
    Karl V Voelkerding
    Rebecca L Margraf
    Jacob D Durtschi
    Sean V Tavtigian
    Wilfred Shankaracharya
    Paul Wu
    Shuoguo Scheet
    Jinchuan Wang
    Gustavo Xing
    Robert Glusman
    Hong Hubley
    Vidu Li
    Barry Garg
    Leroy Moore
    David J Hood
    Deepak Galas
    Martin G Srivastava
    Lynn B Reese
    Mark Jorde
    Chad D Yandell
    Nature Biotechnology, 2014, 32 : 663 - 669
  • [45] A Powerful Adaptive Cauchy-Variable Combination Method for Rare-Variant Association Analysis
    Tang, Y.
    Zhou, Y.
    Chen, L.
    Bao, Y.
    Zhang, R.
    RUSSIAN JOURNAL OF GENETICS, 2021, 57 (02) : 238 - 245
  • [46] An allelic-series rare-variant association test for candidate-gene discovery
    McCaw, Zachary R.
    O'Dushlaine, Colm
    Somineni, Hari
    Bereket, Michael
    Klein, Christoph
    Karaletsos, Theofanis
    Casale, Francesco Paolo
    Koller, Daphne
    Soare, Thomas W.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2023, 110 (08) : 1330 - 1342
  • [47] Multi-trait analysis of rare-variant association summary statistics using MTAR
    Luo, Lan
    Shen, Judong
    Zhang, Hong
    Chhibber, Aparna
    Mehrotra, Devan, V
    Tang, Zheng-Zheng
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [48] Rare variant association testing for multicategory phenotype
    Bocher, Ozvan
    Marenne, Gaelle
    Saint Pierre, Aude
    Ludwig, Thomas E.
    Guey, Stephanie
    Tournier-Lasserve, Elisabeth
    Perdry, Herve
    Genin, Emmanuelle
    GENETIC EPIDEMIOLOGY, 2019, 43 (06) : 646 - 656
  • [49] Fast kernel-based rare-variant association tests integrating variant annotations from deep learning
    Konigorski, Stefan
    Monti, Remo
    Rautenstrauch, Pia
    Lippert, Christoph
    GENETIC EPIDEMIOLOGY, 2020, 44 (05) : 495 - 495
  • [50] A rare-variant test for high-dimensional data
    Kaakinen, Marika
    Magi, Reedik
    Fischer, Krista
    Heikkinen, Jani
    Jarvelin, Marjo-Riitta
    Morris, Andrew P.
    Prokopenko, Inga
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2017, 25 (08) : 988 - 994