A Bayesian hierarchically structured prior for rare-variant association testing

被引:2
|
作者
Yang, Yi [1 ,2 ]
Basu, Saonli [1 ]
Zhang, Lin [1 ]
机构
[1] Univ Minnesota, Div Biostat, Minneapolis, MN USA
[2] Columbia Univ, Dept Biostat, New York, NY 10032 USA
关键词
Bayesian adaptive fused lasso; Crohn' s disease; hierarchical variable selection; pairwise weighting scheme; rare variants;
D O I
10.1002/gepi.22379
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Although genome-wide association studies have been widely used to identify associations between complex diseases and genetic variants, standard single-variant analyses often have limited power when applied to rare variants. To overcome this problem, set-based methods have been developed with the aim of boosting power by borrowing strength from multiple rare variants. We propose the adaptive hierarchically structured variable selection (HSVS-A) before test for association of rare variants in a set with continuous or dichotomous phenotypes and to estimate the effect of individual rare variants simultaneously. HSVS-A has the flexibility to integrate a pairwise weighting scheme, which adaptively induces desirable correlations among variants of similar significance such that we can borrow information from potentially causal and noncausal rare variants to boost power. Simulation studies show that for both continuous and dichotomous phenotypes, HSVS-A is powerful when there are multiple causal rare variants, either in the same or opposite direction of effect, with the presence of a large number of noncausal variants. We also apply HSVS-A to the Wellcome Trust Case Control Consortium Crohn's disease data for testing the association of Crohn's disease with rare variants in pathways. HSVS-A identifies two pathways harboring novel protective rare variants for Crohn's disease.
引用
收藏
页码:413 / 424
页数:12
相关论文
共 50 条
  • [21] Gene-based and pathway-based testing for rare-variant association in affected sib pairs
    Romanescu, Razvan G.
    Green, Jessica
    Andrulis, Irene L.
    Bull, Shelley B.
    [J]. GENETIC EPIDEMIOLOGY, 2020, 44 (04) : 368 - 381
  • [22] Exome sequencing of Finnish isolates enhances rare-variant association power
    Locke, Adam E.
    Steinberg, Karyn Meltz
    Chiang, Charleston W. K.
    Service, Susan K.
    Havulinna, Aki S.
    Stell, Laurel
    Pirinen, Matti
    Abel, Haley J.
    Chiang, Colby C.
    Fulton, Robert S.
    Jackson, Anne U.
    Kang, Chul Joo
    Kanchi, Krishna L.
    Koboldt, Daniel C.
    Larson, David E.
    Nelson, Joanne
    Nicholas, Thomas J.
    Pietila, Arto
    Ramensky, Vasily
    Ray, Debashree
    Scott, Laura J.
    Stringham, Heather M.
    Vangipurapu, Jagadish
    Welch, Ryan
    Yajnik, Pranav
    Yin, Xianyong
    Eriksson, Johan G.
    Ala-Korpela, Mika
    Jarvelin, Marjo-Riitta
    Mannikko, Minna
    Laivuori, Hannele
    Dutcher, Susan K.
    Stitziel, Nathan O.
    Wilson, Richard K.
    Hall, Ira M.
    Sabatti, Chiara
    Palotie, Aarno
    Salomaa, Veikko
    Laakso, Markku
    Ripatti, Samuli
    Boehnke, Michael
    Freimer, Nelson B.
    [J]. NATURE, 2019, 572 (7769) : 323 - +
  • [23] Robust Rare-Variant Association Tests for Quantitative Traits in General Pedigrees
    Jiang Y.
    Conneely K.N.
    Epstein M.P.
    [J]. Statistics in Biosciences, 2018, 10 (3) : 491 - 505
  • [24] Exome sequencing of Finnish isolates enhances rare-variant association power
    Adam E. Locke
    Karyn Meltz Steinberg
    Charleston W. K. Chiang
    Susan K. Service
    Aki S. Havulinna
    Laurel Stell
    Matti Pirinen
    Haley J. Abel
    Colby C. Chiang
    Robert S. Fulton
    Anne U. Jackson
    Chul Joo Kang
    Krishna L. Kanchi
    Daniel C. Koboldt
    David E. Larson
    Joanne Nelson
    Thomas J. Nicholas
    Arto Pietilä
    Vasily Ramensky
    Debashree Ray
    Laura J. Scott
    Heather M. Stringham
    Jagadish Vangipurapu
    Ryan Welch
    Pranav Yajnik
    Xianyong Yin
    Johan G. Eriksson
    Mika Ala-Korpela
    Marjo-Riitta Järvelin
    Minna Männikkö
    Hannele Laivuori
    Susan K. Dutcher
    Nathan O. Stitziel
    Richard K. Wilson
    Ira M. Hall
    Chiara Sabatti
    Aarno Palotie
    Veikko Salomaa
    Markku Laakso
    Samuli Ripatti
    Michael Boehnke
    Nelson B. Freimer
    [J]. Nature, 2019, 572 : 323 - 328
  • [25] The exhaustive genomic scan approach, with an application to rare-variant association analysis
    Kanoungi, George
    Nothnagel, Michael
    Becker, Tim
    Drichel, Dmitriy
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (09) : 1283 - 1291
  • [26] Inflated expectations: Rare-variant association analysis using public controls
    Kim, Jung
    Karyadi, Danielle M.
    Hartley, Stephen W.
    Zhu, Bin
    Wang, Mingyi
    Wu, Dongjing
    Song, Lei
    Armstrong, Gregory T.
    Bhatia, Smita
    Robison, Leslie L.
    Yasui, Yutaka
    Carter, Brian
    Sampson, Joshua N.
    Freedman, Neal D.
    Goldstein, Alisa M.
    Mirabello, Lisa
    Chanock, Stephen J.
    Morton, Lindsay M.
    Savage, Sharon A.
    Stewart, Douglas R.
    [J]. PLOS ONE, 2023, 18 (01):
  • [27] A novel statistical method for rare-variant association studies in general pedigrees
    Huanhuan Zhu
    Zhenchuan Wang
    Xuexia Wang
    Qiuying Sha
    [J]. BMC Proceedings, 10 (Suppl 7)
  • [28] Convex combination sequence kernel association test for rare-variant studies
    Posner, Daniel C.
    Lin, Honghuang
    Meigs, James B.
    Kolaczyk, Eric D.
    Dupuis, Josee
    [J]. GENETIC EPIDEMIOLOGY, 2020, 44 (04) : 352 - 367
  • [29] Testing Rare-Variant Association without Calling Genotypes Allows for Systematic Differences in Sequencing between Cases and Controls
    Hu, Yi-Juan
    Liao, Peizhou
    Johnston, H. Richard
    Allen, Andrew S.
    Satten, Glen A.
    [J]. PLOS GENETICS, 2016, 12 (05):
  • [30] The exhaustive genomic scan approach, with an application to rare-variant association analysis
    George Kanoungi
    Michael Nothnagel
    Tim Becker
    Dmitriy Drichel
    [J]. European Journal of Human Genetics, 2020, 28 : 1283 - 1291