One-dimensional sets and planar sets are aspherical

被引:27
|
作者
Cannon, JW [1 ]
Conner, GR
Zastrow, A
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[2] Univ Gdansk, Inst Math, PL-80952 Gdansk, Poland
基金
美国国家科学基金会;
关键词
aspherical; planar; homotopy;
D O I
10.1016/S0166-8641(01)00005-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a relatively short proof of the theorem that planar sets are aspherical. The first proof of this theorem, by third author Andreas Zastrow, was considerably longer. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:23 / 45
页数:23
相关论文
共 50 条
  • [41] GIBBS MEASURES ON PERMUTATIONS OVER ONE-DIMENSIONAL DISCRETE POINT SETS
    Biskup, Marek
    Richthammer, Thomas
    ANNALS OF APPLIED PROBABILITY, 2015, 25 (02): : 898 - 929
  • [42] Improvements on low discrepancy one-dimensional sequences and two-dimensional point sets
    Faure, Henri
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2006, 2008, : 327 - 341
  • [43] ON 2-DIFFEOMORPHISMS WITH ONE-DIMENSIONAL BASIC SETS AND A FINITE NUMBER OF MODULI
    Grines, V. Z.
    Pochinka, O. V.
    Van Strien, S.
    MOSCOW MATHEMATICAL JOURNAL, 2016, 16 (04) : 727 - 749
  • [44] Welch sets for random generation and representation of reversible one-dimensional cellular automata
    Carlos Seck-Tuoh-Mora, Juan
    Medina-Marin, Joselito
    Hernandez-Romero, Norberto
    Martinez, Genaro J.
    Barragan-Vite, Irving
    INFORMATION SCIENCES, 2017, 382 : 81 - 95
  • [45] CHARACTERIZATIONS OF TURBULENT ONE-DIMENSIONAL MAPPINGS VIA OMICRON-LIMIT SETS
    EVANS, MJ
    HUMKE, PD
    LEE, CM
    OMALLEY, RJ
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 326 (01) : 261 - 280
  • [46] Diffeomorphisms of 2-manifolds with one-dimensional spaciously situated basic sets
    Grines, V. Z.
    Kurenkov, E. D.
    IZVESTIYA MATHEMATICS, 2020, 84 (05) : 862 - 909
  • [47] Limit sets and the rate of convergence for one-dimensional cellular automata traffic models
    Namiki, T
    TRAFFIC AND GRANULAR FLOW'01, 2003, : 103 - 108
  • [48] ONE-DIMENSIONAL SINGULAR INTEGRAL-EQUATIONS WITH COEFFICIENTS VANISHING ON COUNTABLE SETS
    DYBIN, VB
    MATHEMATICS OF THE USSR-IZVESTIYA, 1987, 51 (05): : 245 - 271
  • [49] Exact upper bounds for the number of one-dimensional basic sets of surface A-diffeomorphisms
    Aranson, S.Kh.
    Plykin, R.V.
    Zhirov, A.Yu.
    Zhuzhoma, E.V.
    Journal of Dynamical and Control Systems, 1997, 3 (01): : 1 - 18
  • [50] COMBINING AND UPDATING OF LOCAL ESTIMATES AND REGIONAL MAPS ALONG SETS OF ONE-DIMENSIONAL TRACKS
    WILLSKY, AS
    BELLO, MG
    CASTANON, DA
    LEVY, BC
    VERGHESE, GC
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (04) : 799 - 813