Welch sets for random generation and representation of reversible one-dimensional cellular automata

被引:4
|
作者
Carlos Seck-Tuoh-Mora, Juan [1 ]
Medina-Marin, Joselito [1 ]
Hernandez-Romero, Norberto [1 ]
Martinez, Genaro J. [2 ,3 ]
Barragan-Vite, Irving [1 ]
机构
[1] AAI ICBI UAEH, Carr Pachuca Tulancingo Km 4-5, Pachuca 42184, Hidalgo, Mexico
[2] Univ West England, Unconvent Comp Ctr, Bristol BS16 1QY, Avon, England
[3] Inst Politecn Nacl, Escuela Super Computo, Mexico City 07738, DF, Mexico
关键词
Cellular automata; Reversibility; Welch indices; Bipartite graph; Block mapping; ALGORITHM; GROUPOIDS; MEMORY;
D O I
10.1016/j.ins.2016.12.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Reversible one-dimensional cellular automata are studied from the perspective of Welch Sets. This paper presents an algorithm to generate random Welch sets that define a reversible cellular automaton. Then, properties of Welch sets are used in order to establish two bipartite graphs describing the evolution rule of reversible cellular automata. The first graph gives an alternative representation for the dynamics of these systems as block mappings and shifts. The second graph offers a compact representation for the evolution rule of reversible cellular automata. Both graphs and their matrix representations are illustrated by the generation of random reversible cellular automata with 6 and 18 states. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 95
页数:15
相关论文
共 50 条
  • [1] Transitive behavior in reversible one-dimensional cellular automata with a Welch index 1
    Mora, JCST
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (06): : 837 - 855
  • [2] Reversible one-dimensional cellular automata with one of the two Welch indices equal to 1 and full shifts
    Mora, JCSL
    Hernández, MG
    Vergara, SVC
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (29): : 7989 - 8001
  • [3] THE STRUCTURE OF REVERSIBLE ONE-DIMENSIONAL CELLULAR AUTOMATA
    HILLMAN, D
    [J]. PHYSICA D, 1991, 52 (2-3): : 277 - 292
  • [4] One-dimensional pattern generation by cellular automata
    Kutrib, Martin
    Malcher, Andreas
    [J]. NATURAL COMPUTING, 2022, 21 (03) : 361 - 375
  • [5] Simple universal one-dimensional reversible cellular automata
    Morita, Kenichi
    [J]. JOURNAL OF CELLULAR AUTOMATA, 2007, 2 (02) : 159 - 165
  • [6] One-dimensional pattern generation by cellular automata
    Martin Kutrib
    Andreas Malcher
    [J]. Natural Computing, 2022, 21 : 361 - 375
  • [7] Spectral properties of reversible one-dimensional cellular automata
    Mora, JCST
    Vergara, SVC
    Martinez, GJ
    McIntosh, HV
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2003, 14 (03): : 379 - 395
  • [8] One-Dimensional Pattern Generation by Cellular Automata
    Kutrib, Martin
    Malcher, Andreas
    [J]. CELLULAR AUTOMATA, ACRI 2020, 2021, 12599 : 46 - 55
  • [9] Procedures for calculating reversible one-dimensional cellular automata
    Mora, JCST
    Vergara, SVC
    Martínez, GJ
    McIntosh, HV
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2005, 202 (1-2) : 134 - 141
  • [10] Hybrid one-dimensional reversible cellular automata are regular
    Bingham, Jesse
    Bingham, Brad
    [J]. DISCRETE APPLIED MATHEMATICS, 2007, 155 (18) : 2555 - 2566