Robustness of κ-gon Voronoi diagram construction

被引:1
|
作者
Chen, ZM
Papadopoulou, E
Xu, JH
机构
[1] SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA
[2] IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
Voronoi diagram; algorithmic degree; computational geometry;
D O I
10.1016/j.ipl.2005.10.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a plane sweep algorithm for constructing the Voronoi diagram of a set of non-crossing line segments in 2D space using a distance metric induced by a regular k-gon and study the robustness of the algorithm. Following the algorithmic degree model [G. Liotta, F.P. Preparata, R. Tamassia, Robust proximity queries: an illustration of degree-driven algorithm design, SIAM J. Comput. 28 (3) (1998) 864-889], we show that the Voronoi diagram of a set of arbitrarily oriented segments can be constructed with degree 14 for certain k-gon metrics (e.g., k = 6, 8, 12). For rectilinear segments or segments with slope +1 or -1, the degree reduces to 2. The algorithm is easy to implement and finds applications in VLSI layout. (c) 2005 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:138 / 145
页数:8
相关论文
共 50 条
  • [41] The stability of the Voronoi diagram
    Vyalyi, MN
    Gordeyev, EN
    Tarasov, SP
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1996, 36 (03) : 405 - 414
  • [42] Uncertain Voronoi diagram
    Jooyandeh, Mohammadreza
    Mohades, Ali
    Mirzakhah, Maryam
    INFORMATION PROCESSING LETTERS, 2009, 109 (13) : 709 - 712
  • [43] Rounding Voronoi diagram
    Devillers, O
    Gandoin, PM
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, 1999, 1568 : 375 - 387
  • [44] The anchored Voronoi diagram
    Díaz-Báñez, JM
    Gómez, F
    Ventura, I
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 3, 2004, 3045 : 207 - 216
  • [45] Fuzzy Voronoi Diagram
    Jooyandeh, Mohammadreza
    Khorasani, Ali Mohades
    ADVANCES IN COMPUTER SCIENCE AND ENGINEERING, 2008, 6 : 82 - 89
  • [46] Hyperbolic Voronoi diagram
    Nilforoushan, Zahra
    Mohades, Ali
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2006, PT 5, 2006, 3984 : 735 - 742
  • [47] Voronoi diagram of a circle set constructed from Voronoi diagram of a point set
    Kim, DS
    Kim, D
    Sugihara, K
    ALGORITHM AND COMPUTATION, PROCEEDINGS, 2001, 1969 : 432 - 443
  • [48] CONSTRUCTION OF A FLOW-SIMULATING METHOD WITH FINITE VOLUME BASED ON A VORONOI DIAGRAM
    TANIGUCHI, N
    ARAKAWA, C
    KOBAYASHI, T
    JSME INTERNATIONAL JOURNAL SERIES II-FLUIDS ENGINEERING HEAT TRANSFER POWER COMBUSTION THERMOPHYSICAL PROPERTIES, 1991, 34 (01): : 18 - 23
  • [49] CONSTRUCTION OF THE VORONOI DIAGRAM FOR ONE MILLION GENERATORS IN SINGLE-PRECISION ARITHMETIC
    SUGIHARA, K
    IRI, M
    PROCEEDINGS OF THE IEEE, 1992, 80 (09) : 1471 - 1484
  • [50] GENERALIZED VORONOI DIAGRAMS FOR A LADDER: II. EFFICIENT CONSTRUCTION OF THE DIAGRAM.
    O'Dunlaing, Colm
    Sharir, Micha
    Yap, Chee
    Algorithmica (New York), 1987, 2 (01): : 27 - 59