Robustness of κ-gon Voronoi diagram construction

被引:1
|
作者
Chen, ZM
Papadopoulou, E
Xu, JH
机构
[1] SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA
[2] IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
Voronoi diagram; algorithmic degree; computational geometry;
D O I
10.1016/j.ipl.2005.10.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a plane sweep algorithm for constructing the Voronoi diagram of a set of non-crossing line segments in 2D space using a distance metric induced by a regular k-gon and study the robustness of the algorithm. Following the algorithmic degree model [G. Liotta, F.P. Preparata, R. Tamassia, Robust proximity queries: an illustration of degree-driven algorithm design, SIAM J. Comput. 28 (3) (1998) 864-889], we show that the Voronoi diagram of a set of arbitrarily oriented segments can be constructed with degree 14 for certain k-gon metrics (e.g., k = 6, 8, 12). For rectilinear segments or segments with slope +1 or -1, the degree reduces to 2. The algorithm is easy to implement and finds applications in VLSI layout. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 145
页数:8
相关论文
共 50 条
  • [21] Randomized incremental construction for the Hausdorff Voronoi diagram revisited and extended
    Arseneva, Elena
    Papadopoulou, Evanthia
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 37 (02) : 579 - 600
  • [22] MERGING FREE TREES IN PARALLEL FOR EFFICIENT VORONOI DIAGRAM CONSTRUCTION
    COLE, R
    GOODRICH, MT
    DUNLAING, CO
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 443 : 432 - 445
  • [23] New Methods for the Construction of Voronoi Diagram and the Nearest Neighbor Query
    Li Song
    Zhang Liping
    Li Peng
    Chen Deyun
    2014 9TH INTERNATIONAL FORUM ON STRATEGIC TECHNOLOGY (IFOST), 2014, : 255 - 258
  • [24] Randomized incremental construction for the Hausdorff Voronoi diagram revisited and extended
    Elena Arseneva
    Evanthia Papadopoulou
    Journal of Combinatorial Optimization, 2019, 37 : 579 - 600
  • [25] Randomized Incremental Construction for the Hausdorff Voronoi Diagram Revisited and Extended
    Khramtcova, Elena
    Papadopoulou, Evanthia
    COMPUTING AND COMBINATORICS, COCOON 2017, 2017, 10392 : 321 - 332
  • [26] Efficient Voronoi diagram construction for planar freeform spiral curves
    Lee, Jaewook
    Kim, Yong-Jun
    Kim, Myung-Soo
    Elber, Gershon
    COMPUTER AIDED GEOMETRIC DESIGN, 2016, 43 : 131 - 142
  • [27] Construction of Earthquake Rescue Model Based on Hierarchical Voronoi Diagram
    Pan, Shenrun
    Li, Manzhi
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)
  • [28] An efficient algorithm for approximate Voronoi diagram construction on triangulated surfaces
    Wenlong Meng
    Pengbo Bo
    Xiaodong Zhang
    Jixiang Hong
    Shiqing Xin
    Changhe Tu
    Computational Visual Media, 2023, 9 : 443 - 459
  • [29] An efficient algorithm for approximate Voronoi diagram construction on triangulated surfaces
    Meng, Wenlong
    Bo, Pengbo
    Zhang, Xiaodong
    Hong, Jixiang
    Xin, Shiqing
    Tu, Changhe
    COMPUTATIONAL VISUAL MEDIA, 2023, 9 (03) : 443 - 459
  • [30] ON SIMULTANEOUS CONSTRUCTION OF VORONOI DIAGRAM AND DELAUNAY TRIANGULATION BY PHYSARUM POLYCEPHALUM
    Shirakawa, Tomohiro
    Adamatzky, Andrew
    Gunji, Yukio-Pegio
    Miyake, Yoshihiro
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (09): : 3109 - 3117