Percentile estimators for the three-parameter Weibull distribution for use when all parameters are unknown

被引:5
|
作者
Schmid, U [1 ]
机构
[1] UNIV DUSSELDORF,PSYCHOL INST 4,D-40225 DUSSELDORF,GERMANY
关键词
order statistics; delta method; asymptotic normality;
D O I
10.1080/03610929708831948
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new percentile estimator for the scale parameter of the 3-parameter Weibull distribution is proposed. This estimator is derived from a class of percentile estimators introduced by Krauth (1992). One of Krauth's percentile estimators for the Weibull shape parameter is shown to be identical to an estimator for the shape parameter due to Zanakis (1979). Dubey (1967b) gave a percentile estimator for the location parameter. We study joint asymptotic properties of Dubey's estimator, Zanakis' estimator and the new estimator for the scale parameter. These (percentile) estimators are compared to efficient estimators far the parameters of the Weibull distribution. Finally, we give numerical results on the asymptotic relative efficiencies of the percentile estimators.
引用
下载
收藏
页码:765 / 785
页数:21
相关论文
共 50 条
  • [41] Correlation analysis of three-parameter Weibull distribution parameters with wind energy characteristics in a semi-urban environment
    Wang, Wenxin
    Qin, Chaofan
    Zhang, Jiuyu
    Wen, Caifeng
    Xu, Guoqiang
    ENERGY REPORTS, 2022, 8 : 8480 - 8498
  • [42] Bayesian analysis of three-parameter Weibull distribution based on Gibbs sampling algorithm
    Liu, Fei
    Wang, Zuyao
    Dou, Yifang
    Zhang, Weihua
    Jixie Qiandu/Journal of Mechanical Strength, 2007, 29 (03): : 429 - 432
  • [43] On the existence of the nonlinear weighted least squares estimate for a three-parameter Weibull distribution
    Jukic, Dragan
    Bensic, Mirta
    Scitovski, Rudolf
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (09) : 4502 - 4511
  • [44] Amplitude statistics of sea clutter by three-parameter log-weibull distribution
    Sayama S.
    Ishii S.
    IEEJ Transactions on Fundamentals and Materials, 2019, 139 (11) : 618 - 624
  • [45] A new approach to fitting the three-parameter Weibull distribution: An application to glass ceramics
    Garrido, Arturo
    Caro-Carretero, Raquel
    Jimenez-Octavio, Jesus R.
    Carnicero, Alberto
    Such, Miguel
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (14) : 3403 - 3420
  • [46] An improved parameter estimation method for three-parameter Weibull distribution in the life analysis of rolling bearing
    Yin, Fenglong
    Wang, Yashun
    Zhang, Chunhua
    Zhang, Xiangpo
    ADVANCED MATERIALS DESIGN AND MECHANICS, 2012, 569 : 442 - 446
  • [47] A comparison of three estimators of the Weibull parameters
    Skinner, KR
    Keats, JB
    Zimmer, WJ
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2001, 17 (04) : 249 - 256
  • [48] A THREE-PARAMETER LIFETIME DISTRIBUTION
    Pappas, Vasileios
    Adamidis, Konstantinos
    Loukas, Sotirios
    ADVANCES AND APPLICATIONS IN STATISTICS, 2011, 20 (02) : 159 - 167
  • [49] Parameter estimation of three-parameter Weibull distribution based on progressively Type-II censored samples
    Ng, H. K. T.
    Luo, L.
    Hu, Y.
    Duan, F.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (11) : 1661 - 1678
  • [50] Kernel density estimation of three-parameter Weibull distribution with neural network and genetic algorithm
    Yang, Fan
    Yue, Zhufeng
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 803 - 814