Percentile estimators for the three-parameter Weibull distribution for use when all parameters are unknown

被引:5
|
作者
Schmid, U [1 ]
机构
[1] UNIV DUSSELDORF,PSYCHOL INST 4,D-40225 DUSSELDORF,GERMANY
关键词
order statistics; delta method; asymptotic normality;
D O I
10.1080/03610929708831948
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new percentile estimator for the scale parameter of the 3-parameter Weibull distribution is proposed. This estimator is derived from a class of percentile estimators introduced by Krauth (1992). One of Krauth's percentile estimators for the Weibull shape parameter is shown to be identical to an estimator for the shape parameter due to Zanakis (1979). Dubey (1967b) gave a percentile estimator for the location parameter. We study joint asymptotic properties of Dubey's estimator, Zanakis' estimator and the new estimator for the scale parameter. These (percentile) estimators are compared to efficient estimators far the parameters of the Weibull distribution. Finally, we give numerical results on the asymptotic relative efficiencies of the percentile estimators.
引用
下载
收藏
页码:765 / 785
页数:21
相关论文
共 50 条
  • [21] Method of evaluating the parameters of Weibull distribution of three-parameter with the combination of graphic method and optimal method
    Xiong, Hegen
    Wuhan Gangtie Xueyuan Xuebao/Journal of Wuhan Iron and Steel University, 20 (04): : 449 - 452
  • [22] A comparative evaluation of the estimators of the three-parameter generalized Pareto distribution
    Singh, VP
    Ahmad, M
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (02) : 91 - 106
  • [23] THREE-PARAMETER WEIBULL DISTRIBUTION IN A DIAMETRIC DISTRIBUTION MODEL FOR THINNING EUCALIPTUS STANDS
    Breda Binoti, Daniel Henrique
    Leite, Helio Garcia
    Nogueira, Gilciano Saraiva
    Marques da Silva, Mayra Luiza
    Ribeiro Garcia, Silvana Lages
    da Cruz, Jovane Pereira
    REVISTA ARVORE, 2010, 34 (01): : 147 - 156
  • [24] Two and three-parameter Weibull distribution in available wind power analysis
    Wais, Piotr
    RENEWABLE ENERGY, 2017, 103 : 15 - 29
  • [25] MLE of Three-Parameter Weibull Distribution in Multi-Data Types
    Wang, Yujin
    Fan, Ying
    Wang, Shunkun
    ADVANCES IN ROLLING EQUIPMENT AND TECHNOLOGIES, 2011, 145 : 37 - +
  • [26] Reliability Evaluation on Machining Center Based on Three-Parameter Weibull Distribution
    Ren, Gongchang
    Yang, Zhiwei
    Meng, Bomin
    FRONTIERS OF ADVANCED MATERIALS AND ENGINEERING TECHNOLOGY, PTS 1-3, 2012, 430-432 : 1645 - +
  • [27] A New Three-Parameter Inverse Weibull Distribution with Medical and Engineering Applications
    Alotaibi, Refah
    Okasha, Hassan
    Rezk, Hoda
    Nassar, Mazen
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 135 (02): : 1255 - 1274
  • [28] On the Characteristics of the Predicted Wind Power Based on Three-Parameter Weibull Distribution
    Li Zhi-juan
    Xue An-cheng
    Bi Tian-shu
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 7077 - 7081
  • [29] Three-Parameter Estimation of the Weibull Distribution Based on Least Squares Iteration
    Yang X.
    Song J.
    Xie L.
    Zhao B.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2023, 51 (02): : 20 - 26
  • [30] Three-parameter Weibull distribution of machining center based on ITLS and DE
    Wang, Xiao-Feng
    Zhang, Ying-Zhi
    Shen, Gui-Xiang
    Long, Zhe
    Zhang, Li-Min
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2015, 43 (06): : 84 - 88