Exponentially convergent data assimilation algorithm for Navier-Stokes equations

被引:0
|
作者
Zhuk, Sergiy [1 ]
Tchrakian, Tigran T. [1 ]
Frank, Jason [2 ]
机构
[1] IBM Res, Dublin, Ireland
[2] Univ Utrecht, Utrecht, Netherlands
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper presents a new state estimation algorithm for a bilinear equation representing the Fourier-Galerkin (FG) approximation of the Navier-tokes (NS) equations on a torus in R-2. This state equation is subject to uncertain but bounded noise in the input (Kolmogorov forcing) and initial conditions, and its output is incomplete and contains bounded noise. The algorithm designs a time-dependent gain such that the estimation error converges to zero exponentially. The sufficient condition for the existence of the gain are formulated in the form of algebraic Riccati equations. To demonstrate the results we apply the proposed algorithm to the reconstruction a chaotic fluid flow from incomplete and noisy data.
引用
收藏
页码:3249 / 3256
页数:8
相关论文
共 50 条
  • [41] Open boundary control problem for Navier-Stokes equations including a free surface: Data assimilation
    Gejadze, I. Yu.
    Copeland, G. J. M.
    Navon, I. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (8-9) : 1269 - 1288
  • [42] Large time behavior of energy in exponentially decreasing solutions of the Navier-Stokes equations
    Skalak, Zdenek
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) : 593 - 603
  • [43] NAVIER-STOKES AND STOCHASTIC NAVIER-STOKES EQUATIONS VIA LAGRANGE MULTIPLIERS
    Cruzeiro, Ana Bela
    JOURNAL OF GEOMETRIC MECHANICS, 2019, 11 (04): : 553 - 560
  • [44] ECONOMICAL CENTRAL DIFFERENCE ALGORITHM FOR NAVIER-STOKES EQUATIONS CONVERGENT FOR HIGH MESH REYNOLDS-NUMBERS
    RICHARDS, CW
    CRANE, CM
    APPLIED MATHEMATICAL MODELLING, 1978, 2 (01) : 59 - 61
  • [45] A class of solutions of the Navier-Stokes equations with large data
    Kukavica, Igor
    Rusin, Walter
    Ziane, Mohammed
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (07) : 1492 - 1514
  • [46] Strong solutions of the Navier-Stokes equations with singular data
    Kozono, Hideo
    Shimizu, Senjo
    MATHEMATICAL ANALYSIS IN FLUID MECHANICS: SELECTED RECENT RESULTS, 2018, 710 : 163 - 173
  • [47] SOLUTIONS OF THE NAVIER-STOKES EQUATIONS FOR LARGE OSCILLATORY DATA
    Kukavica, Igor
    Rusin, Walter
    Ziane, Mohammed
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2013, 18 (5-6) : 549 - 586
  • [48] The Navier-Stokes equations with data in bmo-1
    Lemarie-Rieusset, Pierre-Gilles
    Prioux, Nicolas
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) : 280 - 297
  • [49] Recasting Navier-Stokes equations
    Reddy, M. H. Lakshminarayana
    Dadzie, S. Kokou
    Ocone, Raffaella
    Borg, Matthew K.
    Reese, Jason M.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (10):
  • [50] NAVIER-STOKES EQUATIONS ON THE β-PLANE
    Al-Jaboori, Mustafa A. H.
    Wirosoetisno, Djoko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (03): : 687 - 701