The Consequences of Ignoring Multilevel Data Structures in Nonhierarchical Covariance Modeling

被引:183
|
作者
Julian, Marc W. [1 ]
机构
[1] CTB McGraw Hill, Monterey, CA 93940 USA
关键词
D O I
10.1207/S15328007SEM0803_1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study examined the effects of ignoring multilevel data structures in nonhierarchical covariance modeling using a Monte Carlo simulation. Multilevel sample data were generated with respect to 3 design factors: (a) intraclass correlation, (b) group and member configuration, and (c) the models that underlie the between-group and within-group variance components associated with multilevel data. Covariance models that ignored the multilevel structure were then fit to the data. Results indicated that when variables exhibit minimal levels of intraclass correlation, the chi-square model/data fit statistic, the parameter estimators, and the standard error estimators are relatively unbiased. However, as the level of intraclass correlation increases, the chi-square statistic, the parameters, and their standard errors all exhibit estimation problems. The specific group/member configurations as well as the underlying between-group and within-group model structures further exacerbate the estimation problems encountered in the nonhierarchical analysis of multilevel data.
引用
收藏
页码:325 / 352
页数:28
相关论文
共 50 条
  • [21] Modeling covariance structures and optimizing Jatropha curcas breeding
    Evangelista, Jeniffer Santana Pinto Coelho
    Peixoto, Marco Antonio
    Coelho, Igor Ferreira
    Ferreira, Filipe Manoel
    de Souza Marcal, Tiago
    Alves, Rodrigo Silva
    da Silva Chaves, Saulo Fabricio
    Rodrigues, Erina Vitorio
    Laviola, Bruno Galveas
    Resende, Marcos Deon Vilela de
    das Gracas Dias, Kaio Olimpio
    Bhering, Leonardo Lopes
    TREE GENETICS & GENOMES, 2023, 19 (02)
  • [22] Modeling covariance structures and optimizing Jatropha curcas breeding
    Jeniffer Santana Pinto Coelho Evangelista
    Marco Antônio Peixoto
    Igor Ferreira Coelho
    Filipe Manoel Ferreira
    Tiago de Souza Marçal
    Rodrigo Silva Alves
    Saulo Fabricio da Silva Chaves
    Erina Vitório Rodrigues
    Bruno Gâlveas Laviola
    Marcos Deon Vilela de Resende
    Kaio Olimpio das Graças Dias
    Leonardo Lopes Bhering
    Tree Genetics & Genomes, 2023, 19
  • [23] An approach to modeling asymmetric multivariate spatial covariance structures
    Li, Bo
    Zhang, Hao
    JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (10) : 1445 - 1453
  • [24] Unintended consequences of modeling damping in structures
    Charney, Finley A.
    JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 2008, 134 (04): : 581 - 592
  • [25] Error covariance modeling in sequential data assimilation
    Sénégas, J
    Wackernagel, H
    Rosenthal, W
    Wolf, T
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2001, 15 (01) : 65 - 86
  • [26] Bayesian hierarchical modeling on covariance valued data
    Acharyya, Satwik
    Zhang, Zhengwu
    Bhattacharya, Anirban
    Pati, Debdeep
    STAT, 2023, 12 (01):
  • [27] A general algorithm for covariance modeling of discrete data
    Popovic, Gordana C.
    Hui, Francis K. C.
    Warton, David I.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 165 : 86 - 100
  • [28] Hierarchical linear modeling of multilevel data
    Todd, SY
    Crook, TR
    Barilla, AG
    JOURNAL OF SPORT MANAGEMENT, 2005, 19 (04) : 387 - 403
  • [29] Error covariance modeling in sequential data assimilation
    J. Sénégas
    H. Wackernagel
    W. Rosenthal
    T. Wolf
    Stochastic Environmental Research and Risk Assessment, 2001, 15 : 65 - 86
  • [30] Modeling for Spatial Multilevel Structural Data
    Min, Suqin
    He, Xiaoqun
    FIFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2012): COMPUTER VISION, IMAGE ANALYSIS AND PROCESSING, 2013, 8783