Modeling covariance structures and optimizing Jatropha curcas breeding

被引:2
|
作者
Evangelista, Jeniffer Santana Pinto Coelho [1 ]
Peixoto, Marco Antonio [1 ]
Coelho, Igor Ferreira [1 ]
Ferreira, Filipe Manoel [1 ]
de Souza Marcal, Tiago [2 ]
Alves, Rodrigo Silva [3 ]
da Silva Chaves, Saulo Fabricio [1 ]
Rodrigues, Erina Vitorio [4 ]
Laviola, Bruno Galveas [5 ]
Resende, Marcos Deon Vilela de [6 ]
das Gracas Dias, Kaio Olimpio [1 ]
Bhering, Leonardo Lopes [1 ]
机构
[1] Univ Fed Vicosa, Dept Biol Geral, BR-36570900 Vicosa, MG, Brazil
[2] Univ Fed Lavras, Dept Biol, BR-37200900 Lavras, MG, Brazil
[3] Univ Fed Vicosa, Dept Estat, Inst Nacl Ciencia &Tecnol Cafe, BR-36570900 Vicosa, MG, Brazil
[4] Univ Brasilia, Fac UnB Planaltina Ciencias Vida & Terra, Brasilia, DF, Brazil
[5] Embrapa Agroenergia, Parque Estacao Biol, BR-70770901 Brasilia, DF, Brazil
[6] Univ Fed Vicosa, Dept Estat, Embrapa Cafe, BR-36570900 Vicosa, MG, Brazil
关键词
Best linear unbiased prediction; Genetic selection; Renewable energy; Repeated measurements; Residual maximum likelihood; ENVIRONMENT DATA; MIXED MODELS; SELECTION; VARIETY; INFORMATION;
D O I
10.1007/s11295-023-01596-9
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Jatropha curcas has become a prominent source of biofuel, especially because of the high oil content in its fruit. The aim of this study was to test different statistic models and compare the best-fitted model with the compound symmetry model and study the grain yield persistence of J. curcas progenies. A total of 730 individuals from 73 half-sib families were evaluated for the fruit yield trait over six crop years. Repeated measures models with different covariance structures for the genetic and non-genetic effects were tested. Results show an increase up to in accuracy upon modeling the genetic and non-genetic effects when compared to the compound symmetry model. The selection gain obtained via the best-fit model for 10, 15, 20, and 25 selected best progenies was around 3 to 2% higher than gain obtained via the standard statistical model used by breeders (compound symmetry model). The harvests evaluated exhibited accuracies of high magnitude. The ten progenies that stood out with the best genetic performance are also those with the greatest persistence and greatest accumulated yield. Combining modeling of covariance structures for grain yield and selecting for persistence of production can sustain a successful long-term J. curcas breeding program.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Modeling covariance structures and optimizing Jatropha curcas breeding
    Jeniffer Santana Pinto Coelho Evangelista
    Marco Antônio Peixoto
    Igor Ferreira Coelho
    Filipe Manoel Ferreira
    Tiago de Souza Marçal
    Rodrigo Silva Alves
    Saulo Fabricio da Silva Chaves
    Erina Vitório Rodrigues
    Bruno Gâlveas Laviola
    Marcos Deon Vilela de Resende
    Kaio Olimpio das Graças Dias
    Leonardo Lopes Bhering
    Tree Genetics & Genomes, 2023, 19
  • [2] Random regression for modeling yield genetic trajectories in Jatropha curcas breeding
    Peixoto, Marco Antonio
    Alves, Rodrigo Silva
    Coelho, Igor Ferreira
    Evangelista, Jeniffer Santana Pinto Coelho
    de Resende, Marcos Deon Vilela
    Rocha, Joao Romero do Amaral Santos de Carvalho
    Silva, Fabyano Fonseca
    Laviola, Bruno Galveas
    Bhering, Leonardo Lopes
    PLOS ONE, 2020, 15 (12):
  • [3] Domestication and Breeding of Jatropha curcas L.
    Montes, Juan M.
    Melchinger, Albrecht E.
    TRENDS IN PLANT SCIENCE, 2016, 21 (12) : 1045 - 1057
  • [4] Status of molecular breeding for improving Jatropha curcas and biodiesel
    Yue, Gen Hua
    Sun, Fei
    Liu, Peng
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 26 : 332 - 343
  • [5] Floral display and breeding system of Jatropha curcas L.
    Luo Chang-wei1 Li Kun1* Chen You2 Sun Yong-yu1 1Research Institute of Insect Resources
    ForestryStudiesinChina, 2007, (02) : 114 - 119
  • [6] Optimizing Jatropha curcas bioenergy plantations in Pakistan: A geospatial suitability analysis using advanced spatial modeling
    Khalid, Faisal
    Ullah, Sami
    Khalil, Sangam
    Yousaf, Adnan
    Shafique, Muhammad
    Khan, Muhammad Tayyab
    Rehman, Fariha
    Ahmad, Nauman
    Rahman, Khalil Ur
    Hussain, Majid
    TREES FORESTS AND PEOPLE, 2024, 18
  • [8] Breeding and biotechnological efforts in Jatropha curcas L. for sustainable yields
    S.Arockiasamy
    Jyothirmayi Kumpatla
    Sainath Hadole
    Vijay Yepuri
    Manoj Patil
    Vineeta Shrivastava
    Chandrasekhara Rao
    Nagesh Kancharla
    Saakshi Jalali
    Alok Varshney
    Neeta Madan
    Sai Pothakani
    Vinod Nair
    Sridhar Peyyala
    Vishwnadharaju Mudunuri
    Ananthan Gopal
    Niranjan S.Kumar
    Jawahar Pachiyannan
    Satyanarayana Seelamanthula
    J.V.Narasimham
    Makarand Phadke
    Anindya B
    Ajit Sapre
    Santanu Dasgupta
    Oil Crop Science, 2021, 6 (04) : 180 - 191
  • [9] LIPASE EPOXIDATION OPTIMIZING OF JATROPHA CURCAS OIL USING PERLAURIC ACID
    Rafiee-Moghaddam, R.
    Salimon, J.
    Haron, M. D. Jelas
    Jahangirian, H.
    Ismail, M. H. Shah
    Hosseini, S.
    Rezayi, M.
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2014, 9 (03) : 1159 - 1169
  • [10] Breeding Jatropha curcas by genomic selection: A pilot assessment of the accuracy of predictive models
    Peixoto, Leonardo de Azevedo
    Laviola, Bruno Galveas
    Alves, Alexandre Alonso
    Rosado, Tatiana Barbosa
    Bhering, Leonardo Lopes
    PLOS ONE, 2017, 12 (03):