Comparisons of software packages for generalized linear multilevel models

被引:40
|
作者
Zhou, XH
Perkins, AJ
Hui, SL
机构
[1] Indiana Univ, Sch Med, Div Biostat, Indianapolis, IN 46202 USA
[2] Indiana Univ, Regenstrief Inst Hlth Care, Ctr Aging Res, Indianapolis, IN 46202 USA
来源
AMERICAN STATISTICIAN | 1999年 / 53卷 / 03期
关键词
D O I
10.2307/2686112
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We review five software packages that can fit a generalized linear mixed model for data with more than a two-level structure and a multiple number of independent variables. These five packages are MLn, MLwiN, SAS Proc Mixed (Glimmix Macro), HLM, and VARCL. We first discuss the features of each of the five packages. These features include data input and data management, statistical model capabilities, output, and user friendliness. We then compare their performance on several simulated datasets.
引用
收藏
页码:282 / 290
页数:9
相关论文
共 50 条
  • [31] A SURVEY OF COMMERCIALLY AVAILABLE LINEAR-PROGRAMMING SOFTWARE PACKAGES
    CHANG, RT
    FEIRING, BR
    COMPUTERS & INDUSTRIAL ENGINEERING, 1982, 6 (03) : 174 - 174
  • [32] Bayesian inference for generalized linear mixed models: A comparison of different statstical software procedures
    Yimer, Belay Birlie
    Shkedy, Ziv
    COGENT MATHEMATICS & STATISTICS, 2021, 8
  • [33] Estimating multilevel linear models as structural equation models
    Bauer, DJ
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2003, 28 (02) : 135 - 167
  • [34] SOFTWARE PACKAGES
    HEALEY, M
    MICROELECTRONICS AND RELIABILITY, 1979, 19 (5-6): : 549 - 554
  • [35] Handbook of Diagnostic Classification Models: Models and Model Extensions, Applications, Software Packages
    Bao, Yu
    Mireles, Nicolas Emundo
    von Davier, Matthias
    Lee, Young-Sun
    MEASUREMENT-INTERDISCIPLINARY RESEARCH AND PERSPECTIVES, 2023, 21 (04) : 282 - 285
  • [36] Issues using COTS simulation software packages for the interoperation of models
    Ryde, MD
    Taylor, SJE
    PROCEEDINGS OF THE 2003 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2003, : 772 - 777
  • [37] Linear Models are Most Favorable among Generalized Linear Models
    Lee, Kuan-Yun
    Courtade, Thomas A.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1213 - 1218
  • [38] Hierarchical generalized linear models
    Lee, Y
    Nelder, JA
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1996, 58 (04): : 619 - 656
  • [39] Holistic Generalized Linear Models
    Schwendinger, Benjamin
    Schwendinger, Florian
    Vana, Laura
    JOURNAL OF STATISTICAL SOFTWARE, 2024, 108 (07): : 1 - 49
  • [40] Sparsifying Generalized Linear Models
    Jambulapati, Arun
    Lee, James R.
    Liu, Yang P.
    Sidford, Aaron
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 1665 - 1675