Generic algorithms for solving ODE using the Tau method with an error estimation

被引:2
|
作者
Adeniyi, RB [1 ]
Olugbara, OO [1 ]
Taiwo, OA [1 ]
机构
[1] Univ Ilorin, Dept Math Comp Sci, Ilorin, Nigeria
关键词
polynomial coefficients; generic algorithms; Tau method; Tau object class hierarchy; interface definition language;
D O I
10.1080/00207169908804835
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Tau method is an accurate and efficient method for the numerical solution of ordinary differential equation (O.D.E) with polynomial coefficients. In [1] Adeniyi et al., we derived a recursive formula for a fast reliable computational error estimate of Tau method. In the present work, we present the generic algorithms for solving O.D.E. using the Tau method. The pseudocodes describing the algorithms are in C-like language. The algorithms are assembled into a reusable Tau objects' Class Hierarchy (TOCH) with specification given in the interface definition language (IDL) representation and implemented using the C+ + Programming language.
引用
收藏
页码:63 / 80
页数:18
相关论文
共 50 条
  • [21] A Bernoulli Tau method for numerical solution of feedback Nash differential games with an error estimation
    Banadaki, Mojtaba Dehghan
    Navidi, Hamidreza
    [J]. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2022, 10 (04): : 894 - 904
  • [22] ALGORITHMS FOR SOLVING NONLINEAR ESTIMATION PROBLEMS
    GONIN, R
    [J]. SOUTH AFRICAN STATISTICAL JOURNAL, 1983, 17 (02) : 182 - 182
  • [23] ERROR ESTIMATION OF SPECTRAL METHOD FOR SOLVING THREE-DIMENSIONAL VORTICITY EQUATION
    郭本瑜
    [J]. Acta Mathematicae Applicatae Sinica, 1985, (03) : 229 - 240
  • [24] Hybridization of estimation of distribution algorithms with a repair method for solving constraint satisfaction problems
    Handa, H
    [J]. GENETIC AND EVOLUTIONARY COMPUTATION - GECCO 2003, PT I, PROCEEDINGS, 2003, 2723 : 991 - 1002
  • [25] Revisiting the ODE Method for Recursive Algorithms: Fast Convergence Using Quasi Stochastic Approximation
    Shuhang Chen
    Adithya Devraj
    Andrey Berstein
    Sean Meyn
    [J]. Journal of Systems Science and Complexity, 2021, 34 : 1681 - 1702
  • [26] Revisiting the ODE Method for Recursive Algorithms:Fast Convergence Using Quasi Stochastic Approximation
    CHEN Shuhang
    DEVRAJ Adithya
    BERSTEIN Andrey
    MEYN Sean
    [J]. Journal of Systems Science & Complexity, 2021, 34 (05) : 1681 - 1702
  • [27] A novel parameter extraction method for HEMT models by using generic algorithms
    He, Ciou-Sheng
    Yang, Wang-Yu
    Cheng, Meng-Bi
    Su, Ke-Hua
    Yu, Su-Jen
    Hsu, Wei-Chou
    Lee, Ching-Sung
    [J]. EDSSC: 2007 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS, VOLS 1 AND 2, PROCEEDINGS, 2007, : 241 - +
  • [28] Revisiting the ODE Method for Recursive Algorithms: Fast Convergence Using Quasi Stochastic Approximation
    Chen Shuhang
    Devraj, Adithya
    Berstein, Andrey
    Meyn, Sean
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2021, 34 (05) : 1681 - 1702
  • [29] PROBLEM SOLVING USING EVOLUTIONARY ALGORITHMS AND FINITE ELEMENTS METHOD
    Sekaj, Ivan
    Stevo, Stanislav
    Repcok, Matej
    Oravec, Michal
    [J]. 16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MENDEL 2010, 2010, : 360 - 364
  • [30] DYNAMIC ADAPTIVE SELECTION OF INTEGRATION ALGORITHMS WHEN SOLVING ODE-S
    WOLFBRANDT, A
    [J]. BIT, 1982, 22 (03): : 361 - 367