Gas-phase basicity and acidity of tryptophan

被引:15
|
作者
Riffet, Vanessa [1 ]
Bourcier, Sophie [1 ]
Bouchoux, Guy [1 ]
机构
[1] Ecole Polytech, Lab Mecanismes Reactionnels, F-91128 Palaiseau, France
关键词
Aminoacids; Proton affinity; Gas-phase basicity; Protonation entropy; Extended kinetic method; Composite and DFT quantum chemistry calculations; AROMATIC-AMINO-ACIDS; SET MODEL CHEMISTRY; PROTON AFFINITIES; ELECTROSPRAY-IONIZATION; ELECTRONIC-SPECTRUM; FRAGMENTATION REACTIONS; DENSITY FUNCTIONALS; AB-INITIO; SPECTROSCOPY; MOLECULES;
D O I
10.1016/j.ijms.2011.12.014
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
Extensive exploration of the conformational space of neutral, protonated and deprotonated tryptophan has been conducted at various levels of theory including B3LYP, M06-2X, CBS-QB3 and G4MP2 methods. The two latter composite methods, CBS-QB3 and G4MP2, and the M06-2X functional provide very close results in term of relative H degrees(298) and G degrees(298) values between conformers. By contrast, B3LYP functional leads to less satisfying results. Theoretical protonation and deprotonation thermochemistry has been calculated using either the most stable conformers or an equilibrium population of conformers at 298 K. Gas-phase protonation thermochemistry of tryptophan has been experimentally determined by the extended kinetic method using ESI-TQ tandem mass spectrometry. Proton affinity and protonation entropy deduced from these experiments, PA(Trp) = 945.6 +/- 2.0(4.3) kJ mol(-1) and Delta S-p degrees(Trp) = - 16 +/- 2(5) J mol(-1) K-1 (uncertainties are standard deviation and, into parentheses, 95% confidence limit). These figures lead to a gas-phase basicity value of GB(Trp) = 908.4 +/- 2.1(4.6) kJ mol(-1). These experimental data are perfectly reproduced by theoretical calculations performed at the G4MP2 level. Computational results provide also insights on possible re-interpretation of (i) IRMPD spectrum of deprotonated tryptophan, and (ii) mechanism of the NH3 loss from protonated tryptophan. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:47 / 56
页数:10
相关论文
共 50 条
  • [21] An empirical model for gas phase acidity and basicity estimation
    You, H.
    Kim, G. E.
    Na, C. H.
    Lee, S.
    Lee, C. J.
    Cho, K. -H.
    Akiyama, Y.
    Ishida, T.
    No, K. T.
    [J]. SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2014, 25 (02) : 91 - 115
  • [22] Anchoring the gas-phase acidity scale
    Ervin, KM
    DeTuri, VF
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2002, 106 (42): : 9947 - 9956
  • [23] GAS-PHASE ACIDITY OF MONOSUBSTITUTED PHENOLS
    MCIVER, RT
    SILVERS, JH
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1973, 95 (25) : 8462 - 8464
  • [24] Gas-phase basicity of 2-furaldehyde
    Ricci, Andreina
    Piccolella, Simona
    Pepi, Federico
    Patsilinakos, Alexandros
    Ragno, Rino
    Garzoli, Stefania
    Giacomello, Pierluigi
    [J]. JOURNAL OF MASS SPECTROMETRY, 2012, 47 (11): : 1488 - 1494
  • [25] Gas-phase proton affinity and basicity of hydroxybenzophenones
    Carlos, Luis R.
    Loro, Hector
    Lago, Alexsandre F.
    Davalos, Juan Z.
    [J]. CHEMICAL PHYSICS LETTERS, 2018, 713 : 132 - 136
  • [26] Proton affinity and gas-phase basicity of urea
    Wang, F
    Ma, SG
    Zhang, DX
    Cooks, RG
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (17): : 2988 - 2994
  • [27] Gas-phase basicity of formaldehyde by the thermokinetic method
    Bouchoux, G
    Leblanc, D
    [J]. EUROPEAN JOURNAL OF MASS SPECTROMETRY, 2000, 6 (02) : 109 - 112
  • [28] ACIDITY, BASICITY, AND GAS-PHASE ION CHEMISTRY OF HYDROGEN SELENIDE BY ION-CYCLOTRON RESONANCE SPECTROSCOPY
    DIXON, DA
    HOLTZ, D
    BEAUCHAM.JL
    [J]. INORGANIC CHEMISTRY, 1972, 11 (05) : 960 - &
  • [29] ACIDITY, BASICITY, AND ION-MOLECULE REACTIONS OF ARSINE IN GAS-PHASE BY ION-CYCLOTRON RESONANCE SPECTROSCOPY
    WYATT, RH
    HOLTZ, D
    MCMAHON, TB
    BEAUCHAM.JL
    [J]. INORGANIC CHEMISTRY, 1974, 13 (06) : 1511 - 1517
  • [30] The enormous apparent gas-phase acidity of cubylamine
    Abboud, JLM
    Alkorta, I
    Burk, P
    Dávalos, JZ
    Quintanilla, E
    Della, EW
    Koppel, IA
    Koppel, I
    [J]. CHEMICAL PHYSICS LETTERS, 2004, 398 (4-6) : 560 - 563