Discontinuous attractor dimension at the synchronization transition of time-delayed chaotic systems

被引:5
|
作者
Zeeb, Steffen [1 ]
Dahms, Thomas [2 ]
Flunkert, Valentin [2 ,3 ]
Schoell, Eckehard [2 ]
Kanter, Ido [4 ]
Kinzel, Wolfgang [1 ]
机构
[1] Univ Wurzburg, Inst Theoret Phys, D-97074 Wurzburg, Germany
[2] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
[3] IFISC UIB CSIC, Inst Fis Interdisciplinar & Sistemas Complejos, E-07122 Palma de Mallorca, Spain
[4] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
关键词
Time delay;
D O I
10.1103/PhysRevE.87.042910
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The attractor dimension at the transition to complete synchronization in a network of chaotic units with time-delayed couplings is investigated. In particular, we determine the Kaplan-Yorke dimension from the spectrum of Lyapunov exponents for iterated maps and for two coupled semiconductor lasers. We argue that the Kaplan-Yorke dimension must be discontinuous at the transition and compare it to the correlation dimension. For a system of Bernoulli maps, we indeed find a jump in the correlation dimension. The magnitude of the discontinuity in the Kaplan-Yorke dimension is calculated for networks of Bernoulli units as a function of the network size. Furthermore, the scaling of the Kaplan-Yorke dimension as well as of the Kolmogorov entropy with system size and time delay is investigated. DOI: 10.1103/PhysRevE.87.042910
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [41] Synchronization of chaotic systems using time-delayed fuzzy state-feedback controller
    Lam, H. K.
    Ling, Wing-Kuen
    Iu, Herbert Ho-Ching
    Ling, Steve S. H.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (03) : 893 - 903
  • [42] Lag synchronization of chaotic systems with time-delayed linear terms via impulsive control
    Wu, Ranchao
    Cao, Dongxu
    PRAMANA-JOURNAL OF PHYSICS, 2013, 81 (05): : 727 - 735
  • [43] Design of coupling for synchronization in time-delayed systems
    Ghosh, Dibakar
    Grosu, Ioan
    Dana, Syamal K.
    CHAOS, 2012, 22 (03)
  • [44] Generalized Synchronization of Time-Delayed Discrete Systems
    Jing Jian-Yi
    Min Le-Quan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 51 (06) : 1149 - 1152
  • [45] Different types of synchronization in time-delayed systems
    Feng Cun-Fang
    Zhang Yan
    Wang Ying-Hai
    CHINESE PHYSICS LETTERS, 2007, 24 (01) : 50 - 53
  • [46] Generalized Synchronization of Time-Delayed Differential Systems
    Jing Jian-Yi
    Min Le-Quan
    CHINESE PHYSICS LETTERS, 2009, 26 (02)
  • [47] Generalized Synchronization of Time-Delayed Discrete Systems
    JING Jian-Yi~1 and MIN Le-Quan~(1
    Communications in Theoretical Physics, 2009, 51 (06) : 1149 - 1152
  • [48] Transition control for time-delayed systems
    Sun, D
    Kosanovich, KA
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 3210 - 3214
  • [49] DELAYED FEEDBACK H∞ SYNCHRONIZATION FOR TIME-DELAYED CHAOTIC SYSTEMS BASED ON T-S FUZZY MODEL
    Ahn, Choon Ki
    Park, Jung Hun
    MODERN PHYSICS LETTERS B, 2010, 24 (02): : 211 - 224
  • [50] Projective synchronization of time-delayed chaotic systems with unknown parameters using adaptive control method
    Ansari, Sana Parveen
    Das, Subir
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (04) : 726 - 737