Discontinuous attractor dimension at the synchronization transition of time-delayed chaotic systems

被引:5
|
作者
Zeeb, Steffen [1 ]
Dahms, Thomas [2 ]
Flunkert, Valentin [2 ,3 ]
Schoell, Eckehard [2 ]
Kanter, Ido [4 ]
Kinzel, Wolfgang [1 ]
机构
[1] Univ Wurzburg, Inst Theoret Phys, D-97074 Wurzburg, Germany
[2] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
[3] IFISC UIB CSIC, Inst Fis Interdisciplinar & Sistemas Complejos, E-07122 Palma de Mallorca, Spain
[4] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
关键词
Time delay;
D O I
10.1103/PhysRevE.87.042910
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The attractor dimension at the transition to complete synchronization in a network of chaotic units with time-delayed couplings is investigated. In particular, we determine the Kaplan-Yorke dimension from the spectrum of Lyapunov exponents for iterated maps and for two coupled semiconductor lasers. We argue that the Kaplan-Yorke dimension must be discontinuous at the transition and compare it to the correlation dimension. For a system of Bernoulli maps, we indeed find a jump in the correlation dimension. The magnitude of the discontinuity in the Kaplan-Yorke dimension is calculated for networks of Bernoulli units as a function of the network size. Furthermore, the scaling of the Kaplan-Yorke dimension as well as of the Kolmogorov entropy with system size and time delay is investigated. DOI: 10.1103/PhysRevE.87.042910
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Global impulsive exponential synchronization of time-delayed coupled chaotic systems
    Zhu, Wei
    Xu, Daoyi
    Huang, Yumei
    CHAOS SOLITONS & FRACTALS, 2008, 35 (05) : 904 - 912
  • [22] Hybrid projective synchronization of time-delayed fractional order chaotic systems
    Wang, Sha
    Yu, Yongguang
    Wen, Guoguang
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2014, 11 : 129 - 138
  • [23] Generalized synchronization in time-delayed systems
    Shahverdiev, EM
    Shore, KA
    PHYSICAL REVIEW E, 2005, 71 (01):
  • [24] Fuzzy model-based adaptive synchronization of time-delayed chaotic systems
    Vasegh, Nastaran
    Majd, Vahid Johari
    CHAOS SOLITONS & FRACTALS, 2009, 40 (03) : 1484 - 1492
  • [25] Construction and Synchronization for a New Time-delayed Chaotic System
    Shao Ke-yong
    Zhang Ting-ting
    Xu Xiang
    Ma Di
    Chen Bai-quan
    Wen De-yang
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 2739 - 2742
  • [26] Synchronization of networks of chaotic units with time-delayed couplings
    Kinzel, W.
    Englert, A.
    Reents, G.
    Zigzag, M.
    Kanter, I.
    PHYSICAL REVIEW E, 2009, 79 (05)
  • [27] Lag synchronization in time-delayed systems
    Shahverdiev, EM
    Sivaprakasam, S
    Shore, KA
    PHYSICS LETTERS A, 2002, 292 (06) : 320 - 324
  • [28] CHAOTIC SYNCHRONIZATION AND MODULATION OF NONLINEAR TIME-DELAYED FEEDBACK OPTICAL-SYSTEMS
    CELKA, P
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (08): : 455 - 463
  • [29] Projective synchronization of chaotic time-delayed systems via sliding mode controller
    Vasegh, Nastaran
    Khellat, F.
    CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 1054 - 1061
  • [30] Temporary lag and anticipated synchronization and anti-synchronization of uncoupled time-delayed chaotic systems
    Ge, Zheng-Ming
    Wong, Yu-Ting
    Li, Shih-Yu
    JOURNAL OF SOUND AND VIBRATION, 2008, 318 (1-2) : 267 - 278