Discontinuous attractor dimension at the synchronization transition of time-delayed chaotic systems

被引:5
|
作者
Zeeb, Steffen [1 ]
Dahms, Thomas [2 ]
Flunkert, Valentin [2 ,3 ]
Schoell, Eckehard [2 ]
Kanter, Ido [4 ]
Kinzel, Wolfgang [1 ]
机构
[1] Univ Wurzburg, Inst Theoret Phys, D-97074 Wurzburg, Germany
[2] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
[3] IFISC UIB CSIC, Inst Fis Interdisciplinar & Sistemas Complejos, E-07122 Palma de Mallorca, Spain
[4] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
关键词
Time delay;
D O I
10.1103/PhysRevE.87.042910
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The attractor dimension at the transition to complete synchronization in a network of chaotic units with time-delayed couplings is investigated. In particular, we determine the Kaplan-Yorke dimension from the spectrum of Lyapunov exponents for iterated maps and for two coupled semiconductor lasers. We argue that the Kaplan-Yorke dimension must be discontinuous at the transition and compare it to the correlation dimension. For a system of Bernoulli maps, we indeed find a jump in the correlation dimension. The magnitude of the discontinuity in the Kaplan-Yorke dimension is calculated for networks of Bernoulli units as a function of the network size. Furthermore, the scaling of the Kaplan-Yorke dimension as well as of the Kolmogorov entropy with system size and time delay is investigated. DOI: 10.1103/PhysRevE.87.042910
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [1] SYNCHRONIZATION OF TIME-DELAYED SYSTEMS WITH DISCONTINUOUS COUPLING
    Shi, Hong-jun
    Miao, Lian-ying
    Sun, Yong-zheng
    KYBERNETIKA, 2017, 53 (05) : 765 - 779
  • [2] H∞ synchronization of time-delayed chaotic systems
    Park, Ju H.
    Ji, D. H.
    Won, S. C.
    Lee, S. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (01) : 170 - 177
  • [3] Projective synchronization in time-delayed chaotic systems
    Feng Cun-Fang
    Zhang Yan
    Wang Ying-Hai
    CHINESE PHYSICS LETTERS, 2006, 23 (06) : 1418 - 1421
  • [4] Projective synchronization in time-delayed chaotic systems
    Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China
    Chin. Phys. Lett., 2006, 6 (1418-1421):
  • [5] Generalized projective synchronization in time-delayed chaotic systems
    Feng, Cun-Fang
    Zhang, Yan
    Sun, Jin-Tu
    Qi, Wei
    Wang, Ying-Hai
    CHAOS SOLITONS & FRACTALS, 2008, 38 (03) : 743 - 747
  • [6] Synchronization of time-delayed systems with chaotic modulation and cryptography
    Banerjee, Santo
    CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 745 - 750
  • [7] A PASSIVITY APPROACH TO SYNCHRONIZATION FOR TIME-DELAYED CHAOTIC SYSTEMS
    Ahn, Choon Ki
    MODERN PHYSICS LETTERS B, 2009, 23 (29): : 3531 - 3541
  • [8] Fuzzy delayed output feedback synchronization for time-delayed chaotic systems
    Ahn, Choon Ki
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2010, 4 (01) : 16 - 24
  • [9] Generalized heterochronous synchronization in coupled time-delayed chaotic systems
    Zhang, Xiaoming
    Chen, Jufang
    Peng, Jianhua
    NONLINEAR DYNAMICS, 2014, 78 (04) : 2421 - 2428
  • [10] Synchronization in Time-Delayed Fractional order Chaotic Rossler systems
    Shao, Shiquan
    Gao, Xin
    2008 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS PROCEEDINGS, VOLS 1 AND 2: VOL 1: COMMUNICATION THEORY AND SYSTEM, 2008, : 739 - 741