Transmission Lines Scenes Classification Based on Optimized VGG-16

被引:0
|
作者
Zhang, Qiuyan [1 ]
Yang, Zhong [2 ]
Jiang, Yuhong [3 ]
Li, Hongchen [2 ]
Han, Jiaming [2 ]
Xu, Changliang [2 ]
Xu, Hao [2 ]
Xu, Xiangrong [4 ]
机构
[1] Guizhou Power Grid Co Ltd, Elect Power Res Inst, Guiyang 550000, Guizhou, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Key Lab, Minist Ind & Informat Technol, Nanjing 210016, Jiangsu, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Res Inst UAV, Nanjing 210016, Jiangsu, Peoples R China
[4] Anhui Univ Technol, Sch Mech Engn, Maanshan 243032, Anhui, Peoples R China
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Insulators are important part of transmission lines. Traditionally, insulator-detection methods mainly relied on manual operation, which suffered from low efficiency and poor safety. Due to the rapid development of deep learning, convolutional neural networks(CNNs) have been widely applied in the field of image classification. However, traditional CNNs have poor performance in transmission lines scenes classification. We propose an optimized deep new network based on traditional CNNs. The experimental results show that the proposed optimization method can improve the accuracy of transmission lines scenes classification.
引用
收藏
页码:1166 / 1170
页数:5
相关论文
共 50 条
  • [31] 基于VGG-16的电商评论图像审核
    李兰
    潘浩
    电子测试, 2022, 36 (02) : 66 - 69
  • [32] 基于微调VGG-16的现场鞋印检索算法
    史文韬
    唐云祁
    中国人民公安大学学报(自然科学版), 2020, 26 (03) : 22 - 29
  • [33] 基于迁移学习VGG-16的微表情识别
    魏小明
    电脑知识与技术, 2023, 19 (01) : 31 - 34
  • [34] A VGG-16 based Faster RCNN Model for PCB Error Inspection in Industrial AOI Applications
    Li, Yu Ting
    Guo, Jiun In
    2018 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN (ICCE-TW), 2018,
  • [35] 基于VGG-16和迁移学习的苹果识别
    谭炎金
    陈西曲
    武汉轻工大学学报, 2022, 41 (05) : 109 - 115
  • [36] Development of VGG-16 transfer learning framework for geographical landmark recognition
    Bansal, Kanishk
    Singh, Amar
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2023, 17 (03): : 799 - 810
  • [37] Deep learning-based parking occupancy detection framework using ResNet and VGG-16
    Thakur, Narina
    Bhattacharjee, Eshanika
    Jain, Rachna
    Acharya, Biswaranjan
    Hu, Yu-Chen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (1) : 1941 - 1964
  • [38] Deep learning-based parking occupancy detection framework using ResNet and VGG-16
    Narina Thakur
    Eshanika Bhattacharjee
    Rachna Jain
    Biswaranjan Acharya
    Yu-Chen Hu
    Multimedia Tools and Applications, 2024, 83 : 1941 - 1964
  • [39] Traffic Landmark Quality Evaluation Using Efficient VGG-16 model
    Boudissa, Mehieddine
    Kawanaka, Hiroharu
    Wakabayashi, Tetsushi
    2022 JOINT 12TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS AND 23RD INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (SCIS&ISIS), 2022,
  • [40] BRAIN TUMOR SEGMENTATION AND CLASSIFICATION USING CNN PRE-TRAINED VGG-16 MODEL IN MRI IMAGES
    Gayathri, T.
    Kumar, K. sundeep
    IIUM ENGINEERING JOURNAL, 2024, 25 (02): : 196 - 211