Higher-Order Convolution PML (CPML) for FDTD Electromagnetic Modeling

被引:14
|
作者
Giannopoulos, Antonios [1 ]
机构
[1] Univ Edinburgh, Inst Infrastruct & Environm, Sch Engn, Edinburgh EH9 3FG, Midlothian, Scotland
关键词
Time-domain analysis; Finite difference methods; Convolution; Antennas; Standards; Frequency-domain analysis; Numerical stability; Absorbing boundary conditions; finitedifference time-domain (FDTD); finite difference methods; perfectly matched layer (PML); recursive convolution; PERFECTLY MATCHED LAYER; MAXWELLS EQUATIONS; CFS-PML; IMPLEMENTATION; PERFORMANCE; FORMULATION;
D O I
10.1109/TAP.2020.2985169
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new simple formulation for incorporating a higher-order perfectly matched layer (PML) stretching function within a convolution PML (CPML) implementation in finite-difference time-domain (FDTD) electromagnetic modeling codes is developed. Obtaining in closed form the corresponding time domain impulse response of the inverse of a number of higher-order PML stretching functions enables the efficient and simple implementation of such higher-order PMLs using recursive convolution, in the same way as it was introduced initially for the complex frequency shifted (CFS) PML. This new higher-order CPML exhibits excellent performance that is comparable to the performance shown by other higher-order PML formulations whilst it retains the advantage of a relatively simpler implementation.
引用
收藏
页码:6226 / 6231
页数:6
相关论文
共 50 条
  • [31] Generalised higher-order FDTD-PML algorithm for enhanced analysis of 3-D waveguiding EMC structures in curvilinear coordinates
    Kantartzis, NV
    [J]. IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION, 2003, 150 (05) : 351 - 359
  • [32] Graph Convolution Networks based on Higher-order Trustable Neighbors
    He, Meixia
    Chen, Jianrui
    Li, Jiamin
    [J]. Proceedings - 2022 10th International Conference on Information Systems and Computing Technology, ISCTech 2022, 2022, : 215 - 221
  • [33] TIME DOMAIN PHYSICAL OPTICS FOR THE HIGHER-ORDER FDTD MODELING IN ELECTROMAGNETIC SCATTERING FROM 3-D COMPLEX AND COMBINED MULTIPLE MATERIALS OBJECTS
    Faghihi, F.
    Heydari, H.
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2009, 95 : 87 - 102
  • [34] Analysis of numerical dispersion properties of MRTD and higher-order FDTD schemes
    Li, Kang
    Kong, Fan-Min
    Guo, Yi-Feng
    Wang, Jun-Quan
    Mei, Liang-Mo
    [J]. Xitong Fangzhen Xuebao / Journal of System Simulation, 2005, 17 (09): : 2089 - 2091
  • [35] Higher-order hybrid implicit/explicit FDTD time-stepping
    Tierens, W.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 327 : 643 - 652
  • [36] 3-D Higher-Order ADI-FDTD Method
    Zhang, Yan
    Li, Shan-wei
    Zhang, Jun
    Xue, Ming-hua
    [J]. 2007 ASIA PACIFIC MICROWAVE CONFERENCE, VOLS 1-5, 2007, : 96 - 99
  • [37] ON CORRECTIONS DUE TO HIGHER-ORDER ELECTROMAGNETIC TRANSITIONS IN NUCLEI
    EICHLER, J
    [J]. ZEITSCHRIFT FUR PHYSIK, 1967, 202 (JUN): : 49 - &
  • [38] Crystalline electromagnetic responses of higher-order topological semimetals
    Hirsbrunner, Mark R.
    Gray, Alexander D.
    Hughes, Taylor L.
    [J]. PHYSICAL REVIEW B, 2024, 109 (07)
  • [39] Higher-order parity states of the quantum electromagnetic field
    Campos, RA
    Gerry, CC
    [J]. PHYSICS LETTERS A, 2005, 343 (1-3) : 27 - 31
  • [40] Convolution Perfectly Matched Layer (CPML) Implementation of the WCS-FDTD Method for Graphene Applications
    Zhai, Meng-Lin
    Yin, Wen-Yan
    Chen, Zhizhang
    Wang, Xiang-Hua
    [J]. 2014 INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC EUROPE), 2014, : 478 - 481