Higher-Order Convolution PML (CPML) for FDTD Electromagnetic Modeling

被引:14
|
作者
Giannopoulos, Antonios [1 ]
机构
[1] Univ Edinburgh, Inst Infrastruct & Environm, Sch Engn, Edinburgh EH9 3FG, Midlothian, Scotland
关键词
Time-domain analysis; Finite difference methods; Convolution; Antennas; Standards; Frequency-domain analysis; Numerical stability; Absorbing boundary conditions; finitedifference time-domain (FDTD); finite difference methods; perfectly matched layer (PML); recursive convolution; PERFECTLY MATCHED LAYER; MAXWELLS EQUATIONS; CFS-PML; IMPLEMENTATION; PERFORMANCE; FORMULATION;
D O I
10.1109/TAP.2020.2985169
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new simple formulation for incorporating a higher-order perfectly matched layer (PML) stretching function within a convolution PML (CPML) implementation in finite-difference time-domain (FDTD) electromagnetic modeling codes is developed. Obtaining in closed form the corresponding time domain impulse response of the inverse of a number of higher-order PML stretching functions enables the efficient and simple implementation of such higher-order PMLs using recursive convolution, in the same way as it was introduced initially for the complex frequency shifted (CFS) PML. This new higher-order CPML exhibits excellent performance that is comparable to the performance shown by other higher-order PML formulations whilst it retains the advantage of a relatively simpler implementation.
引用
收藏
页码:6226 / 6231
页数:6
相关论文
共 50 条
  • [22] Complex Envelope Weaker HIE With Higher Order PML Algorithm for FDTD Simulation
    Wu, Peiyu
    Xie, Yongjun
    Jiang, Haolin
    Zhang, Jian
    Chen, Jie
    Natsuki, Toshiaki
    [J]. IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS, 2023, 33 (03): : 251 - 254
  • [23] Higher Order CPML for Leapfrog Complying-Divergence Implicit FDTD Method and Its Numerical Properties
    Liu, Shuo
    Tan, Eng Leong
    Zou, Bin
    Zhang, Lamei
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2023, 71 (02) : 522 - 535
  • [24] Compact higher-order split-step FDTD method
    Fu, W
    Tan, EL
    [J]. ELECTRONICS LETTERS, 2005, 41 (07) : 397 - 399
  • [25] A higher-order accurate FDTD solution to scalar SHG problems
    Alsunaidi, M. A.
    Al-Hajiri, F. S.
    [J]. Piers 2007 Prague: Progress in Electromagnetics Research Symposium, Proceedings, 2007, : 475 - 478
  • [26] Handling of the perfect electric conductor in higher-order FDTD method
    Wu, WY
    Kuo, CW
    [J]. APMC 2001: ASIA-PACIFIC MICROWAVE CONFERENCE, VOLS 1-3, PROCEEDINGS, 2001, : 203 - 207
  • [28] Antenna pattern analysis using higher-order FDTD method
    Wu, WY
    Kuo, CW
    [J]. APMC 2001: ASIA-PACIFIC MICROWAVE CONFERENCE, VOLS 1-3, PROCEEDINGS, 2001, : 918 - 921
  • [29] Modeling higher-order lattice anharmonicity
    Pan, Jie
    [J]. NATURE COMPUTATIONAL SCIENCE, 2021, 1 (01): : 17 - 17
  • [30] Modeling higher-order lattice anharmonicity
    Jie Pan
    [J]. Nature Computational Science, 2021, 1 : 17 - 17