Continuous vs. discrete fractional Fourier transforms

被引:54
|
作者
Atakishiyev, NM
Vicent, LE
Wolf, KB
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[2] Univ Autonoma Estado Morelos, Fac Ciencias, Mexico City, DF, Mexico
[3] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62251, Morelos, Mexico
关键词
fractional Fourier transform; Kravchuk (Krawtchouk) polynomial; waveguide; coherent state;
D O I
10.1016/S0377-0427(99)00082-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compare the finite Fourier (-exponential) and Fourier-Kravchuk transforms; both are discrete, finite versions of the Fourier integral transform. The latter is a canonical transform whose fractionalization is well defined. We examine the harmonic oscillator wavefunctions and their finite counterparts: Mehta's basis functions and the Kravchuk functions. The fractionalized Fourier-Kravchuk transform was proposed in J. Opt. Sec, Amer. A (14 (1997) 1467-1477) and is here subject of numerical analysis. In particular, we follow the harmonic motions of coherent states within a finite, discrete optical model of a shallow multimodal waveguide. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:73 / 95
页数:23
相关论文
共 50 条
  • [41] Optimal Overcomplete Kernel Design for Sparse Representations via Discrete Fractional Fourier Transforms
    Yang, Zhijing
    Qing, Chunmei
    Ling, Bingo Wing-Kuen
    Woo, Wai Lok
    Sanei, Saeid
    PROCEEDINGS OF THE 2012 8TH INTERNATIONAL SYMPOSIUM ON COMMUNICATION SYSTEMS, NETWORKS & DIGITAL SIGNAL PROCESSING (CSNDSP), 2012,
  • [42] FRACTIONAL FOURIER-TRANSFORMS AND IMAGING
    BERNARDO, LM
    SOARES, ODD
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (10): : 2622 - 2626
  • [43] Multiplicity of fractional Fourier transforms and their relationships
    Cariolaro, G
    Erseghe, T
    Kraniauskas, P
    Laurenti, N
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (01) : 227 - 241
  • [44] Fractional Fourier transforms on LP and applications
    Chen, Wei
    Fu, Zunwei
    Grafakos, Loukas
    Wu, Yue
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 55 : 71 - 96
  • [45] Self-fractional-Fourier transforms
    Castro, A
    Ojeda-Castañeda, J
    3RD IBEROAMERICAN OPTICS MEETING AND 6TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND THEIR APPLICATIONS, 1999, 3572 : 441 - 445
  • [46] Wavelet-fractional Fourier transforms
    袁琳
    Chinese Physics B, 2008, 17 (01) : 170 - 179
  • [47] Fractional Fourier transforms of hypercomplex signals
    Hendrik De Bie
    Nele De Schepper
    Signal, Image and Video Processing, 2012, 6 : 381 - 388
  • [48] Fractional Fourier transforms in two dimensions
    Simon, R
    Wolf, KB
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (12): : 2368 - 2381
  • [49] ON NAMIASS FRACTIONAL FOURIER-TRANSFORMS
    MCBRIDE, AC
    KERR, FH
    IMA JOURNAL OF APPLIED MATHEMATICS, 1987, 39 (02) : 159 - 175
  • [50] Fractional Fourier Transforms and Geometrical Optics
    Moreno, Ignacio
    Ferreira, Carlos
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 161, 2010, 161 : 89 - 146