Continuous vs. discrete fractional Fourier transforms

被引:54
|
作者
Atakishiyev, NM
Vicent, LE
Wolf, KB
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[2] Univ Autonoma Estado Morelos, Fac Ciencias, Mexico City, DF, Mexico
[3] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62251, Morelos, Mexico
关键词
fractional Fourier transform; Kravchuk (Krawtchouk) polynomial; waveguide; coherent state;
D O I
10.1016/S0377-0427(99)00082-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compare the finite Fourier (-exponential) and Fourier-Kravchuk transforms; both are discrete, finite versions of the Fourier integral transform. The latter is a canonical transform whose fractionalization is well defined. We examine the harmonic oscillator wavefunctions and their finite counterparts: Mehta's basis functions and the Kravchuk functions. The fractionalized Fourier-Kravchuk transform was proposed in J. Opt. Sec, Amer. A (14 (1997) 1467-1477) and is here subject of numerical analysis. In particular, we follow the harmonic motions of coherent states within a finite, discrete optical model of a shallow multimodal waveguide. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:73 / 95
页数:23
相关论文
共 50 条
  • [21] Yang-Fourier transforms of Lipschitz local fractional continuous functions
    A. Bouhlal
    O. Ahmad
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3891 - 3904
  • [22] Real Discrete Fractional Fourier, Hartley, Generalized Fourier and Generalized Hartley Transforms With Many Parameters
    Hsue, Wen-Liang
    Chang, Wei-Ching
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2015, 62 (10) : 2594 - 2605
  • [23] Yang-Fourier transforms of Lipschitz local fractional continuous functions
    Bouhlal, A.
    Ahmad, O.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (08) : 3891 - 3904
  • [24] Generalized fractional Fourier transforms
    J Phys A Math Gen, 3 (973):
  • [25] Generalized fractional Fourier transforms
    Liu, ST
    Jiang, JX
    Zhang, Y
    Zhang, JD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (03): : 973 - 981
  • [26] Simplified fractional Fourier transforms
    Pei, SC
    Ding, JJ
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (12): : 2355 - 2367
  • [27] Extended fractional Fourier transforms
    J Opt Soc Am A, 12 (3316):
  • [28] Extended fractional Fourier transforms
    Hua, JW
    Liu, LR
    Li, GQ
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1997, 14 (12) : 3316 - 3322
  • [29] Simplified fractional Fourier transforms
    Pei, Soo-Chang
    Ding, Jian-Jiun
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2000, 17 (12): : 2355 - 2367
  • [30] DISCRETE FOURIER AND HADAMARD TRANSFORMS
    AHMED, N
    RAO, KR
    ELECTRONICS LETTERS, 1970, 6 (07) : 221 - &