Continuous vs. discrete fractional Fourier transforms

被引:54
|
作者
Atakishiyev, NM
Vicent, LE
Wolf, KB
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[2] Univ Autonoma Estado Morelos, Fac Ciencias, Mexico City, DF, Mexico
[3] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62251, Morelos, Mexico
关键词
fractional Fourier transform; Kravchuk (Krawtchouk) polynomial; waveguide; coherent state;
D O I
10.1016/S0377-0427(99)00082-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compare the finite Fourier (-exponential) and Fourier-Kravchuk transforms; both are discrete, finite versions of the Fourier integral transform. The latter is a canonical transform whose fractionalization is well defined. We examine the harmonic oscillator wavefunctions and their finite counterparts: Mehta's basis functions and the Kravchuk functions. The fractionalized Fourier-Kravchuk transform was proposed in J. Opt. Sec, Amer. A (14 (1997) 1467-1477) and is here subject of numerical analysis. In particular, we follow the harmonic motions of coherent states within a finite, discrete optical model of a shallow multimodal waveguide. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:73 / 95
页数:23
相关论文
共 50 条
  • [1] Fractional discrete Fourier transforms
    Deng, ZT
    Caulfield, HJ
    Schamschula, M
    OPTICS LETTERS, 1996, 21 (18) : 1430 - 1432
  • [2] Fractional discrete Fourier transforms
    Center for Applied Optical Sciences, Department of Physics, Alabama A and M University, P.O. Box 1268, Normal, AL 35762, United States
    Opt. Lett., 18 (1430-1432):
  • [3] The generalized discrete fractional fourier transforms
    Oraintara, S
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 1185 - 1188
  • [4] Discrete fractional Hartley and Fourier transforms
    Pei, SC
    Tseng, CC
    Yeh, MH
    Shyu, JJ
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1998, 45 (06): : 665 - 675
  • [5] On discrete and continuous nonlinear Fourier transforms
    Saksida, Pavle
    XXII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-22), 2014, 563
  • [6] Orthogonal projections and discrete fractional Fourier transforms
    Ozaydin, M.
    Nemati, S.
    Yeary, M.
    DeBrunner, V.
    2006 IEEE 12TH DIGITAL SIGNAL PROCESSING WORKSHOP & 4TH IEEE SIGNAL PROCESSING EDUCATION WORKSHOP, VOLS 1 AND 2, 2006, : 429 - 433
  • [7] Fractional discrete q-Fourier transforms
    Munoz, Carlos A.
    Rueda-Paz, J.
    Bernardo Wolf, Kurt
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (35)
  • [8] Analysis and comparison of discrete fractional fourier transforms
    Su, Xinhua
    Tao, Ran
    Kang, Xuejing
    SIGNAL PROCESSING, 2019, 160 : 284 - 298
  • [9] Implementation of quantum and classical discrete fractional Fourier transforms
    Weimann, Steffen
    Perez-Leija, Armando
    Lebugle, Maxime
    Keil, Robert
    Tichy, Malte
    Graefe, Markus
    Heilmann, Rene
    Nolte, Stefan
    Moya-Cessa, Hector
    Weihs, Gregor
    Christodoulides, Demetrios N.
    Szameit, Alexander
    NATURE COMMUNICATIONS, 2016, 7
  • [10] Implementation of quantum and classical discrete fractional Fourier transforms
    Steffen Weimann
    Armando Perez-Leija
    Maxime Lebugle
    Robert Keil
    Malte Tichy
    Markus Gräfe
    René Heilmann
    Stefan Nolte
    Hector Moya-Cessa
    Gregor Weihs
    Demetrios N. Christodoulides
    Alexander Szameit
    Nature Communications, 7