Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy

被引:119
|
作者
Zhang, Hui [1 ]
He, Yi-Zhu [1 ]
Pan, Ye [2 ]
Guo, Sheng [3 ]
机构
[1] Anhui Univ Technol, Sch Mat Sci & Engn, Anhui Key Lab Mat Sci & Proc, Maanshan 243002, Anhui, Peoples R China
[2] Southeast Univ, Sch Mat Sci & Engn, Jiangsu Key Lab Adv Metall Mat, Nanjing 211189, Jiangsu, Peoples R China
[3] Chalmers Univ Technol, Surface & Microstruct Engn Grp, Dept Mat & Mfg Technol, SE-41296 Gothenburg, Sweden
基金
中国国家自然科学基金;
关键词
High-entropy alloys; Laser cladding; Thermal stability; Stacking fault energy; MECHANICAL-PROPERTIES; MICROSTRUCTURE; SYSTEM;
D O I
10.1016/j.jallcom.2014.02.121
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The application of high-entropy alloys (HEAs) as coating materials has become an active research topic recently. Here an fcc structured CoCrCuFeNi HEA coating with a thickness of similar to 1.2 mm was laser cladded onto a Q235 steel. The alloy coating possessed an excellent thermal stability in that no phase transformations occurred up to 1000 degrees C (0.86T(m)), and the dendritic morphology of the as-solidified microstructure could be kept to higher than 750 degrees C (0.7T(m)). After annealing the as-solidified coating at 750 degrees C for 5 h, the lattice distortion in the rapidly solidified alloy was reduced, resulting in a moderate decrease of both the hardness and electric resistivity. Interestingly, profuse stacking faults ribbons were observed in the dendritic region of the alloy after annealing, driven by the thermal stress. This phenomenon provided a direct experimental evidence of the low stacking fault energy in HEAs. The thermodynamic origin of the thermal stability for HEAs was proposed. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:210 / 214
页数:5
相关论文
共 50 条
  • [41] Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy
    Huang, Shuo
    Li, Wei
    Lu, Song
    Tian, Fuyang
    Shen, Jiang
    Holmstrom, Erik
    Vitos, Levente
    SCRIPTA MATERIALIA, 2015, 108 : 44 - 47
  • [42] Temperature-dependent stacking fault energy, deformation behavior, and tensile properties of a new high-entropy alloy
    Chandan, Avanish Kumar
    Murugaiyan, Premkumar
    Chowdhury, Sandip Ghosh
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 883
  • [43] Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying
    Gao, Jingbo
    Jin, Yuting
    Fan, Yongqiang
    Xu, Dake
    Meng, Lei
    Wang, Cong
    Yu, Yuanping
    Zhang, Deliang
    Wang, Fuhui
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 102 : 159 - 165
  • [44] Structural evolutions and tribological properties of laser cladded FeCoNiCrMo high-entropy alloy coating by laser remelting and tempering process: TEM and DFT calculations
    Lu, Yuling
    Peng, Yuxing
    Chang, Xiangdong
    Shi, Zhiyuan
    TRIBOLOGY INTERNATIONAL, 2024, 199
  • [45] Microstructure and Properties of CoCrFeMnNiTix High-Entropy Alloy Coating by Laser Cladding
    Liu, Hao
    Gao, Qiang
    Man, Jiaxiang
    Li, Xiaojia
    Yang, Haifeng
    Hao, Jingbin
    Zhongguo Jiguang/Chinese Journal of Lasers, 2022, 49 (08):
  • [46] Microstructure and properties of laser cladding CoCrFeNiSix high-entropy alloy coating
    Hao W.-J.
    Sun R.-L.
    Niu W.
    Tan J.-H.
    Li X.-L.
    Surface Technology, 2021, 50 (05): : 87 - 94
  • [47] Research on the laser melting coating process of an AlCoCrFeNi high-entropy alloy
    Zhang, Hao
    Qiao, Mengying
    Liu, Xiangju
    Wang, Youqiang
    Duan, Jizhou
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2025, 22 (02)
  • [48] Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding
    Zhang, Hui
    Pan, Ye
    He, Yi-Zhu
    MATERIALS & DESIGN, 2011, 32 (04) : 1910 - 1915
  • [49] Microstructure and properties of CoCrFeNiSix high-entropy alloy coating by laser cladding
    Tian Z.
    Li X.
    Qin Z.
    Yang X.
    Liu W.
    Zhang P.
    Hanjie Xuebao/Transactions of the China Welding Institution, 2022, 43 (12): : 53 - 63
  • [50] Microstructure and properties of laser clad high-entropy alloy coating on aluminium
    Shi, Yan
    Ni, Cong
    Liu, Jia
    Huang, Genzhe
    MATERIALS SCIENCE AND TECHNOLOGY, 2018, 34 (10) : 1239 - 1245