Boundary conditions and amplitude ratios for finite-size corrections of a one-dimensional quantum spin model

被引:23
|
作者
Izmailian, N. Sh. [1 ,2 ,3 ,4 ]
Hu, Chin-Kum [2 ,5 ,6 ]
机构
[1] Yerevan Phys Inst, Yerevan 375036, Armenia
[2] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
[3] Yerevan State Univ, Int Ctr Adv Study, Yerevan 375025, Armenia
[4] Natl Taiwan Univ, Div Phys, Natl Ctr Theoret Sci Taipei, Taipei 10617, Taiwan
[5] Chung Yuan Christian Univ, Ctr Nonlinear & Complex Syst, Chungli 320, Taiwan
[6] Chung Yuan Christian Univ, Dept Phys, Chungli 320, Taiwan
关键词
UNIVERSAL SCALING FUNCTIONS; RENORMALIZATION-GROUP METHOD; BOND-CORRELATED PERCOLATION; 2-DIMENSIONAL ISING-MODEL; HARD-CORE PARTICLES; MONTE-CARLO; STATISTICAL-MECHANICS; PHASE-TRANSITIONS; OPERATOR CONTENT; CENTRAL CHARGE;
D O I
10.1016/j.nuclphysb.2008.09.009
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the influence of boundary conditions on the finite-size corrections of a one-dimensional (I D) quantum spin model by exact and perturbative theoretic calculations. We obtain two new infinite sets of universal amplitude ratios for the finite-size correction terms of the I D quantum spin model of N sites with free and antiperiodic boundary conditions. The results for the lowest two orders are in perfect agreement with a perturbative conformal field theory scenario proposed by Cardy [J. Cardy, Nucl. Phys. B 270 (1986) 186]. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:613 / 624
页数:12
相关论文
共 50 条
  • [1] ARITHMETICAL FINITE-SIZE CORRECTIONS IN ONE-DIMENSIONAL QUANTUM-SYSTEMS
    AUDIT, P
    TRUONG, TT
    PHYSICS LETTERS A, 1990, 145 (6-7) : 309 - 313
  • [2] Universality of finite-size corrections to geometrical entanglement in one-dimensional quantum critical systems
    Xi-Jing Liu
    Bing-Quan Hu
    Sam Young Cho
    Huan-Qiang Zhou
    Qian-Qian Shi
    Journal of the Korean Physical Society, 2016, 69 : 1212 - 1218
  • [3] Universality of finite-size corrections to geometrical entanglement in one-dimensional quantum critical systems
    Liu, Xi-Jing
    Hu, Bing-Quan
    Cho, Sam Young
    Zhou, Huan-Qiang
    Shi, Qian-Qian
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2016, 69 (07) : 1212 - 1218
  • [4] Finite-size corrections in the Ising model with special boundary conditions
    Izmailian, N. Sh
    NUCLEAR PHYSICS B, 2010, 839 (03) : 446 - 465
  • [5] MODIFIED BOUNDARY-CONDITIONS AND FINITE-SIZE SCALING FOR THE ONE-DIMENSIONAL SPIN-1/2 DIMERIZED XY MODEL
    SPRONKEN, G
    KEMP, M
    PHYSICAL REVIEW B, 1986, 34 (11) : 8038 - 8049
  • [6] Quantum phase transition and finite-size scaling of the one-dimensional Ising model
    Um, Jaegon
    Lee, Sung-Ik
    Kim, Beom Jun
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2007, 50 (01) : 285 - 289
  • [7] Finite-Size Effects of the One-Dimensional Ising Model
    Ferreira, L. S.
    Plascak, J. A.
    BRAZILIAN JOURNAL OF PHYSICS, 2023, 53 (03)
  • [8] Finite-Size Effects of the One-Dimensional Ising Model
    L. S. Ferreira
    J. A. Plascak
    Brazilian Journal of Physics, 2023, 53
  • [10] Spin correlations and finite-size effects in the one-dimensional Kondo box
    Hand, Thomas
    Kroha, Johann
    Monien, Hartmut
    PHYSICAL REVIEW LETTERS, 2006, 97 (13)