Attenuation Correction of PET/MR Using Deep Neural Network Based on Dixon and ZTE MR Images

被引:0
|
作者
Gong, Kuang [1 ]
Yang, Jaewon [3 ]
Kim, Kyungsang [1 ]
El Fakhri, Georges [2 ]
Seo, Youngho [4 ]
Li, Quanzheng [1 ]
机构
[1] Massachusetts Gen Hosp, Boston, MA 02114 USA
[2] Harvard Med Sch, Massachusetts Gen Hosp, Boston, MA 02115 USA
[3] UCSF Radiol & Biomed Imaging, San Francisco, CA USA
[4] Univ Calif San Francisco, San Francisco, CA 94143 USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
650
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Optimization Of MR-Based Attenuation Correction For Cardiac PET/MR
    Vergani, V.
    Robson, P.
    Trivieri, M.
    Fayad, Z. A.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 : S699 - S700
  • [22] Value of a Dixon based MR-PET attenuation correction sequence for the localization and evaluation of PET positive lesions
    Eiber, Matthias
    Martinez-Moeller, Axel
    Souvatzoglou, Michael
    Rummeny, Ernst
    Schwaiger, Markus
    Beer, Ambros
    Nekolla, Stephan
    JOURNAL OF NUCLEAR MEDICINE, 2011, 52
  • [23] Pelvic PET/MR attenuation correction in the image space using deep learning
    Abrahamsen, Bendik Skarre
    Knudtsen, Ingerid Skjei
    Eikenes, Live
    Bathen, Tone Frost
    Elschot, Mattijs
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [24] Evaluation of attenuation correction in cardiac PET using PET/MR
    Lau, Jeffrey M. C.
    Laforest, R.
    Sotoudeh, H.
    Nie, X.
    Sharma, S.
    McConathy, J.
    Novak, E.
    Priatna, A.
    Gropler, R. J.
    Woodard, P. K.
    JOURNAL OF NUCLEAR CARDIOLOGY, 2017, 24 (03) : 839 - 846
  • [25] Evaluation of attenuation correction in cardiac PET using PET/MR
    Jeffrey M. C. Lau
    R. Laforest
    H. Sotoudeh
    X. Nie
    S. Sharma
    J. McConathy
    E. Novak
    A. Priatna
    R. J. Gropler
    P. K. Woodard
    Journal of Nuclear Cardiology, 2017, 24 : 839 - 846
  • [26] Development of a brain perfusion SPECT attenuation correction method using synthetic CT images generated by MR images with a deep convolutional neural network
    Morisawa, Y.
    Uchiyama, Y.
    Takaki, A.
    Ito, S.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (SUPPL 1) : S214 - S215
  • [27] Brain PET-MR attenuation correction with deep learning
    Yaakub, S. N.
    McGinnity, C. J.
    Beck, K.
    Merida, I.
    Dunston, E.
    Muffoletto, M.
    Qureshi, A.
    Bhattacharya, S.
    MacKewn, J.
    Hammers, A.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2019, 39 : 600 - 601
  • [28] Validation of model-based pelvis bone segmentation from MR images for PET/MR attenuation correction
    Renisch, S.
    Blaffert, T.
    Tang, J.
    Hu, Z.
    MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314
  • [29] Attenuation Correction of PET/MR Using Cycle-Consistent Adversarial Network
    Gong, Kuang
    Yang, Jaewon
    Kim, Kyungsang
    El Fakhri, Georges
    Seo, Youngho
    Li, Quanzheng
    JOURNAL OF NUCLEAR MEDICINE, 2019, 60
  • [30] Dental artifacts in the head and neck region: implications for Dixon-based attenuation correction in PET/MR
    Ladefoged C.N.
    Hansen A.E.
    Keller S.H.
    Fischer B.M.
    Rasmussen J.H.
    Law I.
    Kjær A.
    Højgaard L.
    Lauze F.
    Beyer T.
    Andersen F.L.
    EJNMMI Physics, 2 (1) : 1 - 15