Non-normal abelian covers

被引:21
|
作者
Alexeev, Valery [1 ]
Pardini, Rita [2 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30605 USA
[2] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
基金
美国国家科学基金会;
关键词
coverings; abelian covers; non-normal varieties; surface singularities; stable surfaces; DEFORMATIONS; VARIETIES;
D O I
10.1112/S0010437X11007482
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An abelian cover is a finite morphism X -> Y of varieties which is the quotient map for a generically faithful action of a finite abelian group G. Abelian covers with Y smooth and X normal were studied in [R. Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math. 417 (1991), 191-213; MR 1103912(92g:14012)]. Here we study the non-normal case, assuming that X and Y are S-2 varieties that have at worst normal crossings outside a subset of codimension greater than or equal to two. Special attention is paid to the case of Z(2)(r)-covers of surfaces, which is used in [V. Alexeev and R. Pardini, Explicit compactifications of moduli spaces of Campedelli and Burniat surfaces, Preprint (2009), math.AG/arXiv:0901.4431] to construct explicitly compactifications of some components of the moduli space of surfaces of general type.
引用
收藏
页码:1051 / 1084
页数:34
相关论文
共 50 条
  • [31] METHOD FOR SIMULATING NON-NORMAL DISTRIBUTIONS
    FLEISHMAN, AI
    [J]. PSYCHOMETRIKA, 1978, 43 (04) : 521 - 532
  • [32] Transverse instability for non-normal parameters
    Ashwin, P
    Covas, E
    Tavakol, R
    [J]. NONLINEARITY, 1999, 12 (03) : 563 - 577
  • [33] On the classification of non-normal cubic hypersurfaces
    Lee, Wanseok
    Park, Euisung
    Schenzel, Peter
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (08) : 2034 - 2042
  • [34] LINEAR REGRESSION WITH NON-NORMAL ERRORS
    Li, Na
    Vrbik, Jan
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2018, 53 (02) : 153 - 164
  • [35] Bol loops with non-normal nuclei
    C. G. Devillier
    [J]. Archiv der Mathematik, 2003, 81 : 383 - 384
  • [36] Explicit Non-normal Modal Logic
    Rohani, Atefeh
    Studer, Thomas
    [J]. LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION (WOLLIC 2021), 2021, 13038 : 64 - 81
  • [37] Analysis of Covariance with Non-normal Errors
    Senoglu, Birdal
    Avcioglu, Mubeccel Didem
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2009, 77 (03) : 366 - 377
  • [38] PAIR OPERATORS OF NON-NORMAL TYPE
    SILBERMANN, B
    [J]. MATHEMATISCHE NACHRICHTEN, 1974, 60 (1-6) : 79 - 95
  • [39] MaxVaR for non-normal and heteroskedastic returns
    Bhattacharyya, Malay
    Misra, Nityanand
    Kodase, Bharat
    [J]. QUANTITATIVE FINANCE, 2009, 9 (08) : 925 - 935
  • [40] Non-normal affine monoid algebras
    Lukas Katthän
    [J]. Manuscripta Mathematica, 2015, 146 : 223 - 233